• Title/Summary/Keyword: 퍼지 소속도 함수

Search Result 397, Processing Time 0.027 seconds

Design of Adaptive Neuro-Fuzzy Inference System Based Automatic Control System for Integrated Environment Management of Ubiquitous Plant Factory (유비쿼터스 식물공장의 통합환경관리를 위한 적응형 뉴로-퍼지 추론시 스템 기반의 자동제어시스템 설계)

  • Seo, Kwang-Kyu;Kim, Young-Shik;Park, Jong-Sup
    • Journal of Bio-Environment Control
    • /
    • v.20 no.3
    • /
    • pp.169-175
    • /
    • 2011
  • The adaptive neuro-fuzzy inference system (ANFIS) based automatic control system framework was proposed for integrated environment management of ubiquitous plant factory which can collect information of crop cultivation environment and monitor it in real-time by using various environment sensors. Installed wireless sensor nodes, based on the sensor network, collect the growing condition's information such as temperature, humidity, $CO_2$, and the control system is to monitor the control devices by using ANFIS. The proposed automatic control system provides that users can control all equipments installed on the plant factory directly or remotely and the equipments can be controlled automatically when the measured values such as temperature, humidity, $CO_2$, and illuminance deviated from the decent criteria. In addition, the better quality of the agricultural products can be gained through the proposed automatic control system for plant factory.

Adaptation Capability of Reservoirs Considering Climate Change in the Han River Basin, South Korea (기후변화를 고려한 한강유역 저수지의 적응능력 평가)

  • Chung, Gunhui;Jeon, Myeonho;Kim, Hungsoo;Kim, Tae-Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.5B
    • /
    • pp.439-447
    • /
    • 2011
  • It is a main concern for sustainable development in water resources management to evaluate adaptation capability of water resources structures under the future climate conditions. This study introduced the Fuzzy Inference System (FIS) to represent the change of release and storage of reservoirs in the Han River basin corresponding to various inflows. Defining the adaptation capability of reservoirs as the change of maximum and/or minimum of storage corresponding to the change of inflow, the study showed that Gangdong Dam has the worst adaptation capability on the variation of inflow, while Soyanggang Dam has the best capability. This study also constructed an Adaptive Neuro-Fuzzy Inference System (ANFIS) for the more accurate and efficient simulation of the adaptation capability of the Soyanggang Dam. Nine Inflow scenarios were generated using historical data from frequency analysis and synthetic data from two general circulation models with different climate change scenarios. The ANFIS showed significantly different consequences of the release and reservoir storage upon inflow scenarios of Soyanggang Dam, whilst it provides stable reservoir operations despite the variability of rainfall pattern.

Detection of Epileptic Seizure Based on Peak Using Sequential Increment Method (점증적 증가를 이용한 첨점 기반의 간질 검출)

  • Lee, Sang-Hong
    • Journal of Digital Convergence
    • /
    • v.13 no.10
    • /
    • pp.287-293
    • /
    • 2015
  • This study proposed signal processing techniques and neural network with weighted fuzzy membership functions(NEWFM) to detect epileptic seizure from EEG signals. This study used wavelet transform(WT), sequential increment method, and phase space reconstruction(PSR) as signal processing techniques. In the first step of signal processing techniques, wavelet coefficients were extracted from EEG signals using the WT. In the second step, sequential increment method was used to extract peaks from the wavelet coefficients. In the third step, 3D diagram was produced from the extracted peaks using the PSR. The Euclidean distances and statistical methods were used to extract 16 features used as inputs for NEWFM. The proposed methodology shows that accuracy, specificity, and sensitivity are 97.5%, 100%, 95% with 16 features, respectively.

Classification of Epileptic Seizure Signals Using Wavelet Transform and Hilbert Transform (웨이블릿 변환과 힐버트 변환을 이용한 간질 파형 분류)

  • Lee, Sang-Hong
    • Journal of Digital Convergence
    • /
    • v.14 no.4
    • /
    • pp.277-283
    • /
    • 2016
  • This study proposed new methods to classify normal and epileptic seizure signals from EEG signals using peaks extracted by wavelet transform(WT) and Hilbert transform(HT) based on a neural network with weighted fuzzy membership functions(NEWFM). This study has the following three steps for extracting inputs for NEWFM. In the first step, the WT was used to remove noise from EEG signals. In the second step, the HT was used to extract peaks from the wavelet coefficients. We also selected the peaks bigger than the average of peaks to extract big peaks. In the third step, statistical methods were used to extract 16 features used as inputs for NEWFM from peaks. The proposed methodology shows that accuracy, specificity, and sensitivity are 99.25%, 99.4%, 99% with 16 features, respectively. Improvement in feature selection method in view to enhancing the accuracy is planned as the future work for selecting good features from 16 features.

Minimized Stock Forecasting Features Selection by Automatic Feature Extraction Method (자동 특징 추출기법에 의한 최소의 주식예측 특징선택)

  • Lee, Sang-Hong;Lim, Joon-S.
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.2
    • /
    • pp.206-211
    • /
    • 2009
  • This paper presents a methodology to 1-day-forecast stock index using the automatic feature extraction method based on the neural network with weighted fuzzy membership functions (NEWFM). The distributed non-overlap area measurement method selects the minimized number of input features by automatically removing the worst input features one by one. CPP$_{n,m}$(Current Price Position of the day n: a percentage of the difference between the price of the day n and the moving average from the day n-1 to the day n-m) and the 2 wavelet transformed coefficients from the recent 32 days of CPP$_{n,m}$ are selected as minimized features using bounded sum of weighted fuzzy membership functions (BSWFMs). For the data sets, from 1989 to 1998, the proposed method shows that the forecast rate is 60.93%.

Fuzzy Support Vector Machine for Pattern Classification of Time Series Data of KOSPI200 Index (시계열 자료 코스피200의 패턴분류를 위한 퍼지 서포트 벡타 기계)

  • Lee, S.Y.;Sohn, S.Y.;Kim, C.E.;Lee, Y.B.
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.1
    • /
    • pp.52-56
    • /
    • 2004
  • The Information of classification and estimate about KOSPI200 index`s up and down in the stock market becomes an important standard of decision-making in designing portofolio in futures and option market. Because the coming trend of time series patterns, an economic indicator, is very subordinate to the most recent economic pattern, it is necessary to study the recent patterns most preferentially. This paper compares classification and estimated performance of SVM(Support Vector Machine) and Fuzzy SVM model that are getting into the spotlight in time series analyses, neural net models and various fields. Specially, it proves that Fuzzy SVM is superior by presenting the most suitable dimension to fuzzy membership function that has time series attribute in accordance with learning Data Base.

Pattern Classification Model Design and Performance Comparison for Data Mining of Time Series Data (시계열 자료의 데이터마이닝을 위한 패턴분류 모델설계 및 성능비교)

  • Lee, Soo-Yong;Lee, Kyoung-Joung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.6
    • /
    • pp.730-736
    • /
    • 2011
  • In this paper, we designed the models for pattern classification which can reflect the latest trend in time series. It has been shown that fusion models based on statistical and AI methods are superior to traditional ones for the pattern classification model supporting decision making. Especially, the hit rates of pattern classification models combined with fuzzy theory are relatively increased. The statistical SVM models combined with fuzzy membership function, or the models combining neural network and FCM has shown good performance. BPN, PNN, FNN, FCM, SVM, FSVM, Decision Tree, Time Series Analysis, and Regression Analysis were used for pattern classification models in the experiments of this paper. The economical indices DB with time series properties of the financial market(Korea, KOSPI200 DB) and the electrocardiogram DB of arrhythmia patients in hospital emergencies(USA, MIT-BIH DB) were used for data base.

A Compensation for Distortion of Stereo-scopic Camera Image Using Neuro-Fuzzy Inference System (뉴로-퍼지 추론시스템을 이용한 입체 영상 카메라의 왜곡 영상 보정)

  • Seo, Han-Seog;Yim, Wha-Young
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.5 no.3
    • /
    • pp.262-268
    • /
    • 2010
  • In this paper, this study restores the distorted image to its original image by compensating for the distortion of image from a fixed-focus camera lens. The various developments and applications of the imaging devices and the image sensors used in a wide range of industries and expanded use, but due to the needs of the small size and light weight of the camera, the distortion from acquiring images of the distorted curvature of the lens tends to affect many. In particular, the three-dimensional imaging camera, each different distortion of left and right lens cause the degradation of three-dimensional sensitivity and left-right image distortion ratio. we approached the way of generalizing the approximate equations to restore each part of left-right camera images to the coordinators of the original images. The adaptive Neuro-Fuzzy Inference System is configured for it. This system is divided from each membership function and is inferred by 1st order Sugeno Fuzzy model. The result is that the compensated images close to the left, right original images. Using low-cost and compact imaging lens by which also determine the exact three-dimensional image-sensing capabilities and will be able to expect from this study.

Color Image Processing using Fuzzy Cluster Filters and Weighted Vector $\alpha$-trimmed Mean Filter (퍼지 클러스터 필터와 가중화 된 벡터 $\alpha$-trimmed 평균 필터를 이용한 칼라 영상처리)

  • 엄경배;이준환
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.9B
    • /
    • pp.1731-1741
    • /
    • 1999
  • Color images are often corrupted by the noise due to noisy sensors or channel transmission errors. Some filters such as vector media and vector $\alpha$-trimmed mean filter have bee used for color noise removal. In this paper, We propose the fuzzy cluster filters based on the possibilistic c-means clustering, because the possibilistic c-means clustering can get robust memberships in noisy environments. Also, we propose weighted vector $\alpha$-trimmed mean filter to improve the conventional vector $\alpha$-trimmed mean filter. In this filter, the central data are more weighted than the outlying data. In this paper, we implemented the color noise generator to evaluate the performance of the proposed filters in the color noise environments. The NCD measure and visual measure by human observer are used for evaluation the performance of the proposed filters. In the experiment, proposed fuzzy cluster filters in the sense of NCD measure gave the best performance over conventional filters in the mixed noise. Simulation results showed that proposed weighted vector $\alpha$-trimmed mean filters better than the conventional vector $\alpha$-trimmed mean filter in any kinds of noise.

  • PDF

The Multi-objective Optimal Design of Thermopile Sensor Having Beam or Membrane Structure (빔 혹은 멤버레인 구조를 가지는 써모파일 센서의 다목적 최적설계)

  • Lee, Jun-Bae;Kim, Tae-Yoon
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.1
    • /
    • pp.6-15
    • /
    • 1997
  • This paper presents the multi-objective optimal design of thermopile sensor having beam or membrane structure. The thermopile sensor is composed of $Si_{3}N_{4}/SiO_{2}$ dielectric membrane, Al-polysilicon thermocouples and $RuO_{2}$ thin film for black body. The sensing method is based on the Seebeck effect which is originated from the temperature difference of the two positions, black body and silicon rim. The objective functions of the presented design are sensitivity, detectivity and thermal time constant. The modelling of the sensor is proposed including the package. The multi-objective optimization technique is applied to the design of the sensor not only inspecting the modelling equation but also simulating mathematical programming method. Especially, fuzzy optimization technique is adapted to get the optimal solution which enables the designer to reach the more practical solution. The design constraint of the voltage output originated from the change of the environmental temperature is included for practical use.

  • PDF