• Title/Summary/Keyword: 퍼지 버너

Search Result 4, Processing Time 0.231 seconds

A study on the Development of Purge Burner for City Gas (도시가스용 퍼지 버너 개발에 관한 연구(II))

  • Lee, Hyun-Chan;You, Hyun-Seok;Lee, Joong-Seong
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.175-179
    • /
    • 2000
  • A combustion project was completed regarding the development of a high-flow-rate purge burner in cooperation with three city gas companies(Pusan, Taegu, Samchulli). The project, started in May 1991, aimed at purging the line-packed-gas safely and quickly before getting into gas pipe working or relocation. According to the results, the purging noise is less than 80dB due to silencer screen. multi-nozzle and outlet inserted tube employed. In addition, the developed burner shows an increased work efficiency of 40-50% more as compared to the performance of conventional purge equipments. The project result is regarded as the first high-flow-rate purge burner developed within Korea. contributing to shortening purge hours, safe field work and easiness of purge site selection.

  • PDF

Flame Diagnosis Using Neuro-Fuzzy Learning Algorithm (뉴로퍼지학습 알고리듬을 이용한 연소상태진단)

  • Lee, Tae-Yeong;Kim, Seong-Hwan;Lee, Sang-Ryong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.4
    • /
    • pp.587-595
    • /
    • 2002
  • Recent trend changes a criterion for evaluation of humors that environmental problems are raised as a global issue. Burners with higher thermal efficiency and lower oxygen in the exhaust gas, evaluated better. To comply with environmental regulations, burners must satisfy the NO/sub x/ and CO regulation. Consequently, 'good burner'means one whose thermal efficiency is high under the constraint of NO/sub x/ and CO consistency. To make existing burner satisfy recent criterion, it is highly recommended to develop a feedback control scheme whose output is the consistency of NO/sub x/ and CO. This paper describes the development of a real time flame diagnosis technique that evaluate and diagnose the combustion states, such as consistency of components in exhaust gas, stability of flame in the quantitative sense. In this paper, it was proposed on the flame diagnosis technique of burner using Neuro-Fuzzy algorithm. This study focuses on the relation of the color of the flame and the state of combustion. Neuro-Fuzzy loaming algorithm is used in obtaining the fuzzy membership function and rules. Using the constructed inference algorithm, the amount of NO/sub x/ and CO of the combustion gas was successfully inferred.

A mathematical model of describing oxygen density's variation in multi-band type reheating furnaces (다대식 가열로내의 산소농도 변화 모델)

  • 은종호;최윤혁;이해영
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.14 no.6
    • /
    • pp.58-68
    • /
    • 2000
  • In this paper, a mathematical model of describing oxygen density in multi-band type reheating furnaces was presented. Model designed in this paper was composed of majorly two parts. One is a model regarding 'variation of existing gas'. The other is a model of showing 'variation of oxygen content'. Each model is designed by considering four factors related to variation of oxygen density based on chemical reaction, fluid dynamics and fuzzy theory. Four factors to be considered are combustion reaction in burner, fluid transfer between adjacent combustion bands, fluid transfer from furnace's inner space to external space, and input of external air via gates. According to simulation results, it was shown that varying pattern of oxygen density in each combustion band is similar to generally expected operation data in reheating furnace.

  • PDF