• 제목/요약/키워드: 퍼지 로직 제어

검색결과 121건 처리시간 0.023초

유전 프로그래밍을 이용한 규칙 기반 제어기의 설계와 퍼지로직 제어기로의 응용 (Design of a Rule Based Controller using Genetic Programming and Its Application to Fuzzy Logic Controller)

  • 정일권;이주장
    • 제어로봇시스템학회논문지
    • /
    • 제4권5호
    • /
    • pp.624-629
    • /
    • 1998
  • Evolutionary computation techniques can solve search problems using simulated evolution based on the ‘survival of the fittest’. Recently, the genetic programming (GP) which evolves computer programs using the genetic algorithm was introduced. In this paper, the genetic programming technique is used in order to design a rule based controller consisting of condition-action rules for an unknown system. No a priori knowledge about the structure of the controller is needed. Representation of a solution, functions and terminals in GP are analyzed, and a method of constructing a fuzzy logic controller using the obtained rule based controller is described. A simulation example using a nonlinear system shows the validity and efficiency of the proposed method.

  • PDF

텐덤형 냉방시스템의 압축기와 전자팽창밸브 제어 (Control of Compressor and Electronic Expansion Valve for a Tandom-type Air-conditioner)

  • 정남철;한도영
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2005년도 동계학술발표대회 논문집
    • /
    • pp.469-473
    • /
    • 2005
  • Capacities of a tandom-type air-conditioner may be modulated by turning on/off multiple compressors and adjusting positions of a electronic expansion valve. In this study. control algorithms for compressors and a electronic expansion valve were developed by using fuzzy’ logics. There algorithms were implemented in a test lab and proved to be effective for the control of indoor air temperature and superheat temperature.

  • PDF

퍼지로직과 모델추종제어를 이용한 4륜 조향 차량에 관한 연구 (A Study on a 4WS Vehicle Using Fuzzy Logic and Model Following Control)

  • 백승주;오재윤
    • 대한기계학회논문집A
    • /
    • 제23권6호
    • /
    • pp.931-942
    • /
    • 1999
  • This paper develops a 3 DOF vehicle model which includes lateral, roll and yaw motion to study a 4WS vehicle. The model is used for the simulation of a 4WS vehicle behavior, and to derive a control algorithm for rear wheel steering. This paper uses a feedforward plus feedback control scheme to compute a rear wheel steering angle. The feedforward control scheme for computing the first rear wheel steering angle uses a gain which is acquired by multiplying a proper value on a gain to maintain a zero sideslip angle. The feedback control scheme for computing the second rear wheel steering angle uses fuzzy logic and model following control scheme. A linear 2 DOF model is used as a reference model for model following control, and is derived from the developed 3 DOF model by neglecting sprung mass roll motion. A reference state variable is yaw rate, and is computed using the linear 2 DOF model. J-turn and lane change maneuver simulation are performed to show the effectiveness of the developed control scheme. The simulation results show that the 4WS vehicle with the developed control scheme has much better performance in yaw rate, lateral acceleration, roll angle, and sideslip angle than the 2WS vehicle. Also, the results show that the performance of the developed control is close to the one of an optimal control which assumes all states are perfect.

유연 링크 로봇의 제어 (Fuzzy -Logic Controller for Flexible-Link Manipulators)

  • 강재용;박종현
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.342-345
    • /
    • 1995
  • This paper describes the design process and the experimental results of a fuzzy logic controller to control the tip position of a fixible-link manipulator, directly driven by a AC motor, with a large payload. The joint angle fuzzy logic controller is designed without a costly nonlinear system analysis of the flexible manipulator and the AC motor drive system. The state variables for the fuzzy logic controller are joint angle, joint velocity, link deflection, and link deflection velocity. The simulation and experimental results show that the joint position control is not satisfactory when the controller is designed under the assumption of no link flexibility and that stable joint position control and link vibration suppression can be cahieved with the fuzzy logic controller suggested in this paper.

  • PDF

$\alpha$-레벨 퍼지집합 분해에 의한 직류 서보제어용 퍼지 PI+PD 로직회로 구현 (Implemented of Fuzzy PI+PD Logic circuits for DC Servo Control Using Decomposition of $\alpha$-level fuzzy set)

  • 홍정표;원태현;정종원;이영수;이상무;홍순일
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2008년도 하계학술대회 논문집
    • /
    • pp.127-129
    • /
    • 2008
  • This paper describes a method of approximate reasoning for fuzzy control of servo system, based on decomposition of -level fuzzy sets. It is propose that logic circuits for fuzzy PI+PD are a body from fuzzy inference to defuzzificaion in cases where the output variable u directly is generated PWM. The effectiveness for robust and faster response of the fuzzy control scheme is verified for a variable parameter by comparison with a PID control and fuzzy control. A position control of DC servo system with a fuzzy logic controller successfully demonstrated.

  • PDF

적응진화연산과 퍼지 로직을 이용한 퍼지 제어기의 이득요소 동조 (Scaling Factor Tuning of Fuzzy Controller Using Adaptive Evolutionary Computation and Fuzzy Logic)

  • 김종율;황기현;문경준;김형수;박준호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 B
    • /
    • pp.404-406
    • /
    • 1998
  • In this paper, we propose a scaling factor tuning method to improve the performance of fuzzy controller. Tuning rules and reasoning are utilized on-line to determine the scaling factors based on absolute value of the error and its difference. A adaptive evolutionary computation (AEC) is used to search for the optimal tuning rules that will maximize the fitness function. Finally, the proposed fuzzy controller is applied to the angular stabilization of an inverted pendulum.

  • PDF

퍼지 로직에 의한 궤도차량의 지능제어시스템 설계 (Intelligent control system design of track vehicle based-on fuzzy logic)

  • 김종수;한성현;조길수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.131-134
    • /
    • 1997
  • This paper presents a new approach to the design of intelligent control system for track vehicle system using fuzzy logic based on neural network. The proposed control scheme uses a Gaussian function as a unit function in the neural network-fuzzy, and back propagation algorithm to train the fuzzy-neural network controller in the framework of the specialized learning architecture. It is proposed a learning controller consisting of two neural network-fuzzy based on independent reasoning and a connection net with fixed weights to simply the neural networks-fuzzy. The performance of the proposed controller is illustrated by simulation for trajectory tracking of track vehicle speed.

  • PDF

퍼지 로직 알고리듬을 이용한 차량 구동력 제어 (Vehicle traction control using fuzzy logic algorithm)

  • 박성훈;권동수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.680-683
    • /
    • 1996
  • The dynamics of the vehicle system has highly nonlinear components such as an engine, a torque converter and variable road condition. This thesis proposes a Fuzzy Logic Algorithm that shows better control performance than Antiwindup PI in the highly nonlinear vehicle system. Traction Control System(TCS), which adjusts throttle valve opening by Fuzzy Logic Algorithm improves vehicle drivability, steerability and stability when vehicle is starting and cornering. When a throttle valve is opened at large degree, Fuzzy Logic Algorithm shows better performances like a small settling time and a small oscillation than Antiwindup PI in simulation. The decreased desired slip ratio improves steerability in the simulation when a vehicle is cornering. The Fuzzy Logic Algorithm has been tested by a 1/5-scale vehicle for tracking the constant desired velocity.

  • PDF

선박 자동 운항 제어기의 설계 (Design of Automatic Ship Maneuvering Control System)

  • 곽문규;서상현
    • 한국해양환경ㆍ에너지학회지
    • /
    • 제2권1호
    • /
    • pp.90-101
    • /
    • 1999
  • 본 논문은 선박자동 항로 추적제어기와 자동접이안 제어기를 포함하는 선박자동운항시스템 설계와 관련이 있다. 자동항로 추적제어기의 설계를 위해서는 최적제어기가 사용되었는데 선형화된 선박조종식이 사용되었다. 수치예는 자동항로 추적제어기가 선장이 미리정한 way point를 추적할 수 있음을 보여주고 있다. 자동접이안 제어기의 설계를 위해서는 비중앙화 방식의 제어기가 사용되었다. 자동접이안 제어기는 자동 항로 추적 제어기에 전진속도에 대한 퍼지 로직 제어기가 추가 되어 실현되었다 수치예는 자동접이안 제어기가 성공적으로 사용되었음을 보여준다.

  • PDF

차량의 동특성 향상을 위한 통합 샤시 제어기의 설계 (Design of an integrated Chassis Controller for the Improvement of Vehicle Dynamic Characteristics)

  • 이신원;안태환;안현식;이운성;김도현;김상섭
    • 전자공학회논문지S
    • /
    • 제35S권9호
    • /
    • pp.43-52
    • /
    • 1998
  • 본 논문에서는 능동형 샤시 시스템이 정착된 차량의 안정성(Stability), 조종성(Handling) 및 승차감(Ridecomfort)을 향상시키기 위한 새로운 통합제어기를 설계한다. 하이브리드 퍼지논리 제어기는 퍼지논리 제어기, 스카이 훅 제어기, 자세 제어기 및 롤 모멘트 분포 제어기로 이루어지며, 차량의 주행상태에 기초한 통합제어로직을 이용하여 위와 같은 제어기들을 적절히 결합시켜 사용한다. 또한 MATRIXx/SYSTEMBBUILD 소프트웨어를 이용하여 16자유도 차량모델에 대하여 시뮬레이션을 수행함으로써 차량의 승차감, 조종성 및 능동적 안전도가 향상됨을 확인한다.

  • PDF