• Title/Summary/Keyword: 퍼지추론기

Search Result 188, Processing Time 0.024 seconds

Active Control of Earthquake Responses Using Fuzzy Supervisory Control Technique (퍼지관리제어기법을 이용한 지진응답의 능동제어)

  • 박관순;고현무;옥승용
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.5 no.4
    • /
    • pp.75-81
    • /
    • 2001
  • Fuzzy supervisory control method is studied for the active control of earthquake excited structures. The proposed algorithm supervises and tunes previously designed control gains by evaluating the state of a structure through the fuzzy inference mechanism, which uses the information of relative displacements and velocities. Example designs and numerical simulations of earthquake exited three degrees of freedom structures are performed to prove the validity of the proposed control algorithm. Comparative results with conventional LQR method show that the proposed method is effective for the vibration suppression of earthquake excited structures.

  • PDF

퍼지 추론에 의한 제어방법

  • 변증남;김동화
    • 전기의세계
    • /
    • v.39 no.12
    • /
    • pp.21-32
    • /
    • 1990
  • 퍼지 논리를 이용한 제어시스템에 관하여 핵심 개념을 중심으로 기술하고자 한다. 요약컨데 이 퍼지제어기의 특징은 1) Parallel(distributed) control 2) logic control 3) linguistic control등이며 퍼지 제어가 효과적일 수 있는 제어대상(plant)로서는 수학적 모델을 적용하기 힘든 시스템으로서 경험적으로 또는 수동적인 방법으로 제어가 잘되고 있는 대상을 들 수 있다. 그 뿐만 아니라 간단한 제어기가 필요한 경우로서 보다 효과적인 제어측 Software를 쓰거나 센서 또는 필터없이 사용가능하고, Inverted Penedulum의 자세 제어처럼 정확성보다는 속도 응답 제어가 요구되는 경우 등에 효과적으로 쓸 수 있는 것으로 알려지고 있다. Fuzzy 제어는 지식 베이스의 규모에서 인공지능형 Expert System보다 Compact하고 선형.비선형 플랜트에 공히 이용될 수 있으며, 설계자는 오퍼레이터와의 접촉을 통해 룰을 구축하므로 사용자가 시스템을 이해하기 쉬운 잇점등이 있기도 한다. 그러나 가장 큰 문제는 구축해 놓은 시스템의 안전성(Stability)를 이론적으로 사전에 검증하기가 어렵고, 같은 제어대상이라 할지라도 추론방법, 소속함수의 형태선택, 룰수 등에 따라 제어성능이 바뀔수 있으나, 무엇이 어떤 영향을 주는지 규명되지 않은점 등 여러가지 연구되어야 할 내용이 많이 있다.

  • PDF

Design of PID Type Fuzzy Logic Acceleration Controller for Turbojet Engine Using High-gain Observer (고이득 관측기를 이용한 터보제트 엔진의 PID 퍼지 추론 가속도 제어기 설계)

  • Jie, Min-Seok;Kim, Dae-Gi;Hong, Gyo-Young;Ahn, Dong-Man;Hong, Seung-Beom
    • Journal of Advanced Navigation Technology
    • /
    • v.17 no.1
    • /
    • pp.107-114
    • /
    • 2013
  • In this paper, we propose controller to control the acceleration of unmanned aircraft turbojet engine. The high-gain observer to estimate the rotational speed of compressor is used, and the turbojet engine controller applying fuzzy heuristic techniques and PID control algorithm are designed. fuzzy PID controller produces the flow control input to prevent the surge and flame-out phenomena at the acceleration and deceleration of the turbojet engine. The standard acceleration is set and the fuel flow control is defined by the fuzzy heuristic. Computer simulations are performed using MATLAB in order to verify the performance of the proposed controller.

A Design of Fuzzy Control System for Moving Object Tracking (이동물체 추적을 위한 퍼지제어 시스템 설계)

  • 강석범;김재기;양태규
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.4
    • /
    • pp.738-745
    • /
    • 2001
  • In this paper, when the moving object move to the three-dimentional space, the tracking system track the moving object using the fuzzy reasoning. The joint angle el of the manipulator rotate from $0^{\circ}\; to\; 360^{\circ}$ , and the joint angle $\theta_2$rotate from$0^{\circ}\; to\; 360^{\circ}$. The fuzzy singleton is used for fuzzification and the control rule is twenty five and the fuzzy inference method is simplified Mamdani's reasoning and the defuzzification is the SCOG(Simplified Center Of Gravity) of the fuzzy controller To measure of the performance of the designed system, the fuzzy controller is compared with the CTM(Computed Torque Method) controller at the same condition. when the disturbance torque is ON, the both of CTM and fuzzy controller tracked object without error, However, the disturbance torque changed 0.4N, the CTM controller is 10 times greater than fuzzy controller at the sum of absolute error difference. The designed system is showed it's robustness against with disturbance.

  • PDF

The Traffic Signal control System Applying Fuzzy Reasoning (퍼지추론을 적용한 교통 신호 제어 시스템)

  • Kim, Mi-Gyeong;Lee, Yun-Bae
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.4
    • /
    • pp.977-987
    • /
    • 1999
  • The current traffic signal control systems are operated depending on the pre-planned control scheme or the selected control scheme according to a period of time. The problem with these types of traffic control systems is that they can not cope with variant traffic flows appropriately. Such a problem can be difficult to solve by using binary logic. Therefore, in this 0paper, we propose a traffic signal control system which can deal wit various traffic flows quickly and effectively. The proposed controller is operated under uncertainty and in a fuzzy environment. It show the congestion of road traffic by using fuzzy logic, and it determines the length of green signal by means of a fuzzy inference engine. It modeled using petri-net to verify its validation.

  • PDF

Chronic Stress Evaluation using Neuro-Fuzzy (뉴로-퍼지를 이용한 만성적인 스트레스 평가)

  • ;;;;;;;Hiroko Takeuchi;Haruyuki Minamitani
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.5
    • /
    • pp.465-471
    • /
    • 2003
  • The purpose of this research was to evaluate chronic stress using physiological parameters. Wistar rats were exposed to the sound stress for 14 days. Biosignals were acquired hourly. To develop a fuzzy inference system which can integrate physiological parameters. the parameters of the system were adjusted by the adaptive neuro-fuzzy inference system. Of the training dataset, input dataset was the physiological parameters from the biosignals and output dataset was the target values from the cortisol production. Physiological parameters were integrated using the fuzzy inference system. then 24-hour results were analyzed by the Cosinor method. Chronic stress was evaluated from the degree of circadian rhythm disturbance. Suppose that the degree of stress for initial rest period is 1. Then. the degree of stress after 14-day sound stress increased to 1.37, and increased to 1.47 after the 7-day recovery period. That is, the rat was exposed to 37%-increased amount of stress by the 14-day sound and did not recover after the 7-day recovery period.

High-speed Integer Operations in the Fuzzy Consequent Part (퍼지 후건부의 고속 정수연산)

  • Chae, Sang-Won;Lee, Sang-Gu
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.11b
    • /
    • pp.802-804
    • /
    • 2005
  • 지능 시스템에 사용되는 퍼지 데이터를 고속으로 처리하기 위한 퍼지 제어시스템의 중요한 문제점들 중의 하나는 퍼지 추론 및 비퍼지화 단계에서의 수행속도의 개선이다. 특히 후건부의 계산 및 비퍼지화 단계에서의 고속 연산이 더욱 중요하다. 따라서 본 논문에서는 퍼지 제어기의 속도향상을 위해 후건부 단계에서 [0,1]의 실수 연산을 하지 않고, 퍼지 소속함수의 값을 정수형 격자 (400×30)에 매핑시켜 고속의 정수 덧셈 연산만으로 수행할 수 있는 알고리듬을 제안한다.

  • PDF

Design of PI-type Fuzzy Logic Controller for a Turbojet Engine of Unmanned Aircraft (무인 항공기용 터보 제트 엔진의 PI-구조 퍼지 추론 제어기 설계)

  • Jie, Min-Seok;Mo, Eun-Jong;Lee, Kang-Woong
    • Journal of Advanced Navigation Technology
    • /
    • v.9 no.1
    • /
    • pp.34-40
    • /
    • 2005
  • In this paper we propose a turbojet engine controller of unmanned aircraft based on the Fuzzy-PI algorithm. To prevent any surge or a flame out event during the engine acceleration or deceleration, the PI-type fuzzy controller effectively controls the fuel flow input of the control system. The fuzzy inference rule made by the logarithm function of acceleration error improves the tracking error. Computer simulations applied to the linear model of a turbojet engine show that the proposed method has good tracking performance for the reference acceleration and deceleration commands.

  • PDF

Self -Tuning Scheme for Parameters of PID Controllers by Fuzzy Inference (퍼지추론에 의한 PID제어기의 파라미터 Tuning의 구성)

  • 이요섭;홍순일
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.4 no.4
    • /
    • pp.52-57
    • /
    • 2003
  • A PID parameter tuning method was presented by the fuzzy singleton inference, based on step response-shaping of plant and experience knowledge of expert. The parameter-tuning has tow levels. The higher level determines modified coefficients for the controller based on operator's tuning know-how for characteristics of plant which can not be modeled. The lower level determines specified coefficients based on characteristics of response by Ziegler-Nickel's bounded sensitivity method. The last level parameters tuning of a PID controller is adjusted which the modified and specified coefficients makes adjustment rule, and is adjusted the proper value to each parameters by fuzzy singleton inference. Moreover, proposed the tuning method can reflex exporter knowledge and operator's tuning know-how and fuzzy singleton inference is rapidly operated.

  • PDF

Design of a Fuzzy Controller for a Line Trace Vehicle (라인 트레이스 차량을 위한 퍼지 제어기의 설계)

  • Kim, Kwang-Baek;Woo, Young-Woon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.11
    • /
    • pp.2289-2294
    • /
    • 2009
  • In this paper, we proposed a fuzzy controller for racing of a line trace vehicle. Sensor values are computed by statuses of line detecting sensors attached to the line trace vehicle and these sensor values are used for fuzzy inference rules of steering angle control to decide steering angle as output. The decided steering angle is also used for fuzzy inference rules of motor speed control to decide motor speed as output. We experimented and analyzed two proposed methods - one is fuzzy control of steering angle only and the other is fuzzy control of both steering angle and motor speed. In the experiment, we verified that the second proposed method was more efficient in racing speed.