• Title/Summary/Keyword: 퍼지구조모델링

Search Result 72, Processing Time 0.022 seconds

Analysis of Consciousness Structure of Social Workers for the Casual Factors of Elderly Abuse Using FSM (FSM을 이용한 노인학대 발생요인에 대한 사회복지사의 의식구조 분석)

  • Jang, Yun-Jeong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.6
    • /
    • pp.458-463
    • /
    • 2016
  • In this paper, the fuzzy structure model for the consciousness structure of social workers related to the elder abuse factors was derived and analyzed. The characteristics of the model was obtained as follows. First, the elder abuse behavior at the top layer was related to the attitude of the elderly and the work overload of social workers. Second, the attitude of the elderly and the work overload of social workers at the middle layer were related to the personality of social worker, the physical and mental dependency of client, and the personality of client. Third, the personality of social worker, the knowledge of the elderly, the personality of client, and the physical and psychological dependence of the client affected directly the elder abuse behavior without going through the middle layer. Fourth, the work overload of social workers at the middle layer was affected the attitude of the elderly. Finally, the age of social workers, the working image, the job training, and provision of punishment to the social workers were the isolated layer, in which the relationship between the elder abuse behavior and related factors was not found.

Characteristics of Input-Output Spaces of Fuzzy Inference Systems by Means of Membership Functions and Performance Analyses (소속 함수에 의한 퍼지 추론 시스템의 입출력 공간 특성 및 성능 분석)

  • Park, Keon-Jun;Lee, Dong-Yoon
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.4
    • /
    • pp.74-82
    • /
    • 2011
  • To do fuzzy modelling of a nonlinear process needs to analyze the characteristics of input-output of fuzzy inference systems according to the division of entire input spaces and the fuzzy reasoning methods. For this, fuzzy model is expressed by identifying the structure and parameters of the system by means of input variables, fuzzy partition of input spaces, and consequence polynomial functions. In the premise part of the fuzzy rules Min-Max method using the minimum and maximum values of input data set and C-Means clustering algorithm forming input data into the clusters are used for identification of fuzzy model and membership functions are used as a series of triangular, gaussian-like, trapezoid-type membership functions. In the consequence part of the fuzzy rules fuzzy reasoning is conducted by two types of inferences such as simplified and linear inference. The identification of the consequence parameters, namely polynomial coefficients, of each rule are carried out by the standard least square method. And lastly, using gas furnace process which is widely used in nonlinear process we evaluate the performance and the system characteristics.

Fuzzy Neural System Modeling using Fuzzy Entropy (퍼지 엔트로피를 이용한 퍼지 뉴럴 시스템 모델링)

  • 박인규
    • Journal of Korea Multimedia Society
    • /
    • v.3 no.2
    • /
    • pp.201-208
    • /
    • 2000
  • In this paper We describe an algorithm which is devised for 4he partition o# the input space and the generation of fuzzy rules by the fuzzy entropy and tested with the time series prediction problem using Mackey-Glass chaotic time series. This method divides the input space into several fuzzy regions and assigns a degree of each of the generated rules for the partitioned subspaces from the given data using the Shannon function and fuzzy entropy function generating the optimal knowledge base without the irrelevant rules. In this scheme the basic idea of the fuzzy neural network is to realize the fuzzy rules base and the process of reasoning by neural network and to make the corresponding parameters of the fuzzy control rules be adapted by the steepest descent algorithm. The Proposed algorithm has been naturally derived by means of the synergistic combination of the approximative approach and the descriptive approach. Each output of the rule's consequences has expressed with its connection weights in order to minimize the system parameters and reduce its complexities.

  • PDF

LMI Based L2 Robust Stability Analysis and Design of Fuzzy Feedback Linearization Control Systems (LMI를 기반으로 한 퍼지 피드백 선형화 제어 시스템의 L2 강인 안정성 해석)

  • Hyun, Chang-Ho;Park, Chang-Woo;Park, Mignon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.5
    • /
    • pp.582-589
    • /
    • 2003
  • This paper presents the robust stability analysis and design methodology of the fuzzy feedback linearization control systems. Uncertainty and disturbances with known bounds are assumed to be included Un the Takagi-Sugeno (TS) fuzzy models representing the nonlinear plants. $L_2$ robust stability of the closed system is analyzed by casting the systems into the diagonal norm bounded linear differential inclusions (DNLDI) formulation. Based on the linear matrix inequality (LMI) optimization programming, a numerical method for finding the maximum stable ranges of the fuzzy feedback linearization control gains is also proposed. To verify the effectiveness of the proposed scheme, the robust stability analysis and control design examples are given.

The Application of Adaptive Network-based Fuzzy Inference System (ANFIS) for Modeling the Hourly Runoff in the Gapcheon Watershed (적응형 네트워크 기반 퍼지추론 시스템을 적용한 갑천유역의 홍수유출 모델링)

  • Kim, Ho Jun;Chung, Gunhui;Lee, Do-Hun;Lee, Eun Tae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.5B
    • /
    • pp.405-414
    • /
    • 2011
  • The adaptive network-based fuzzy inference system (ANFIS) which had a success for time series prediction and system control was applied for modeling the hourly runoff in the Gapcheon watershed. The ANFIS used the antecedent rainfall and runoff as the input. The ANFIS was trained by varying the various simulation factors such as mean areal rainfall estimation, the number of input variables, the type of membership function and the number of membership function. The root mean square error (RMSE), mean peak runoff error (PE), and mean peak time error (TE) were used for validating the ANFIS simulation. The ANFIS predicted runoff was in good agreement with the measured runoff and the applicability of ANFIS for modelling the hourly runoff appeared to be good. The forecasting ability of ANFIS up to the maximum 8 lead hour was investigated by applying the different input structure to ANFIS model. The accuracy of ANFIS for predicting the hourly runoff was reduced as the forecasting lead hours increased. The long-term predictability of ANFIS for forecasting the hourly runoff at longer lead hours appeared to be limited. The ANFIS might be useful for modeling the hourly runoff and has an advantage over the physically based models because the model construction of ANFIS based on only input and output data is relatively simple.

Design of a Neuro-Euzzy Controller for Hydraulic Servo Systems (유압서보 시스템을 위한 뉴로-퍼지 제어기 설계)

  • 김천호;조형석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.1
    • /
    • pp.101-111
    • /
    • 1993
  • Many processes such as machining, injection-moulding and metal-forming are usually operated by hydraulic servo-systems. The dynamic characteristics of these systems are complex and highly non-linear and are often subjected to the uncertain external disturbances associated with the processes. Consequently, the conventional approach to the controller design for these systems may not guarantee accurate tracking control performance. An effective neuro-fuzzy controller is proposed to realize an accurate hydraulic servo-system regardless of the uncertainties and the external disturbances. For this purpose, first, we develop a simplified fuzzy logic controller which have multidimensional and unsymmetric membership functions. Secondly, we develop a neural network which consists of the parameters of the fuzzy logic controller. It is show that the neural network has both learning capability and linguistic representation capability. The proposed controller was implemented on a hydraulic servo-system. Feedback error learning architecture is adopted which uses the feedback error directly without passing through the dynamics or inverse transfer function of the hydraulic servo-system to train the neuro-fuzzy controller. A series of simulations was performed for the position-tracking control of the system subjected to external disturbances. The results of simulations show that regardless of inherent non-linearities and disturbances, an accuracy tracking-control performance is obtained using the proposed neuro-fuzzy controller.

Robust Fuzzy Controller for Active Magnetic Bearing System with 6-DOF (6 자유도를 갖는 능동 자기베어링 시스템의 강인 퍼지 제어기)

  • Sung, Hwa-Chang;Park, Jin-Bae;Joo, Young-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.3
    • /
    • pp.267-272
    • /
    • 2012
  • This paper propose the implementation of robust fuzzy controller for controlling an active magnetic bearing (AMB) system with 6 degree of freedom (DOF). A basic model with 6 DOF rotor dynamics and electromagnetic force equations for conical magnetic bearings is proposed. The developed model has severe nonlinearity and uncertainty so that it is not easy to obtain the control objective. For solving this problem, we use the Takagi-Sugeno (T-S) fuzzy model which is suitable for designing fuzzy controller. The control object in the AMB system enables the rotor to rotate without any phsical contact by using magnetic force. In this paper, we analyze the nonlinearity of the active magnetic bearing system by using fuzzy control algorithm and desing the robust control algorithm for solving the parameter variation. Simulation results for AMB are demonstrated to visualize the feasibility of the proposed method.

The Improvement of maintainability evaluation method at system level using system component information and fuzzy technique (시스템의 구성품 정보와 퍼지 기법을 활용한 시스템 수준 정비도 평가 방법의 개선)

  • Yoo, Yeon-Yong;Lee, Jae-Chon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.100-109
    • /
    • 2019
  • Maintainability indicates the extent to which maintenance can be done easily and quickly. The consideration of maintainability is crucial to reduce the operation and support costs of weapon systems, but if the maintainability is evaluated after the prototype production is done and necessitates design changes, it may increase the cost and delay the schedule. The evaluation should verify whether maintenance work can be performed, and support the designers in developing a design to improve maintainability. In previous studies, the maintainability index was calculated using the graph theory at the early design phase, but evaluation accuracy appeared to be limited. Analyzing the methods of evaluating the maintainability using fuzzy logic and 3D modeling indicate that the design of a system with good maintainability should be done in an integrated manner during the whole system life cycle. This paper proposes a method to evaluate maintainability using SysML-based modeling and simulation technique and fuzzy logic. The physical design structure with maintainability attributes was modeled using SysML 'bdd' diagram, and the maintainability was represented by an AHP matrix for maintainability attributes. We then calculated the maintainability using AHP-based weighting calculation and fuzzy logic through the use of SysML 'par' diagram that incorporated MATLAB. The proposed maintainability model can be managed efficiently and consistently, and the state of system design and maintainability can be analyzed quantitatively, thereby improving design by early identifying the items with low maintainability.

Mesh Generation Methodology for FE Analysis of 3D Structures Using Fuzzy Knowledge and Bubble Method (피지이론과 버블기법을 이용한 3차원 구조물의 유한요소해석을 위한 요소생성기법)

  • Lee, Joon-Seong;Lee, Eun-Chul
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.2
    • /
    • pp.230-235
    • /
    • 2009
  • This paper describes an automatic finite element mesh generation for finite element analysis of three-dimensional structures. It is consisting of fuzzy knowledge processing, bubble meshing and solid geometry modeler. This novel mesh generation process consists of three subprocesses: (a) definition of geometric model, i.e. analysis model, (b) generation of bubbles, and (c) generation of elements. One of commercial solid modelers is employed for three-dimensional solid structures. Bubble is generated if its distance from existing bubble points is similar to the bubble spacing function at the point. The bubble spacing function is well controlled by the fuzzy knowledge processing. The Delaunay method is introduced as a basic tool for element generation. Automatic generation of finite element for three-dimensional solid structures holds great benefits for analyses. Practical performances of the present system are demonstrated through several mesh generations for 3D geometry.

Integrated Neural Networks Model for Handwritten Pattern Recognition using Segment Recombination (연속 필기 패턴 인식을 위한 세그먼트 재조합 기반 통합 신경망 모델)

  • 장경익;류정우;박성진;김명원
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1998.10c
    • /
    • pp.399-401
    • /
    • 1998
  • 단일 문자 인식과 달리 연속 필기 패턴의 인식은 근본적인 필기 패턴의 형태적 특성을 충분히 고려할 필요가 있으며 다양한 형태의 패턴에 대한 특징이나 정보를 사용하여 종합적으로 판단 할 수 있는 모델의 유연성이 요구된다. 신경망의 학습 기능은 패턴의 왜곡과 잡음 등에 크게 영향을 받지 않으면서 인식에 필요한 특징의 추출이나 패턴 부류에 해당하는 노드의 반응을 스스로 학습시킬 수 있고, 다양한 형태의 정보를 쉽게 통합할 수 있는 유연한 구조를 제공한다. 퍼지 이론(Fuzzy theory)은 일정한 규칙이나 수학적 모델로 표현하기 어려운 패턴의 애매한 특징을 모델링할 수 있기 때문에 인식 대상의 총체적 특징을 추출해 신경망에 효과적으로 적용할 수 있다. 본 논문에서는 연속 필기 숫자 패턴을 인식을 위한 신경망과 퍼지 이론을 이용한 통합 신경망 모델을 제안한다.

  • PDF