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Mesh Generation Methodology for FE Analysis of 3D Structures
Using Fuzzy Knowledge and Bubble Method

olEY - 0l2F""
*

Joon-Seong Lee” and Eun-Chul Lee™

of
BoEpe 33d7eRe 922N 4% AT f9as YA @ A2 ALl mEas A4, 8 &
HEsgAz FAAT ARe 22439 EL () AN By P9, () WEAY, 81 (0 L83
2 o]Folxitt FARIYol: 8 FA=RLAE o g o HEL 4 AxelMe) NERATR o Ao
o HERA P AARFYe o8 xdgel A a4 e SN E MR dEsUEnE =48
B 379 PaEo o fEase ABAL HAE A8 2 Aol Aok AANA A Azdel 184S AFeH
98 3249 FAol g A AT

AME  AFaaAA, MBS, ANAAAL, G2 SUNTAE, Fardy

Abstract

This paper describes an automatic finite element mesh generation for finite element analysis of three-dimensional
structures. It is consisting of fuzzy knowledge processing, bubble meshing and solid geometry modeler. This novel
mesh generation process consists of three subprocesses: (a) definition of geometric model, i.e. analysis model, (b)
generation of bubbles, and (c) generation of elements. One of commercial solid modelers is employed for
three-dimensional solid structures. Bubble is generated if its distance from existing bubble points is similar to the
bubble spacing function at the point. The bubble spacing function is well controlled by the fuzzy knowledge
processing. The Delaunay method is introduced as a basic tool for element generation. Automatic generation of finite
element for three-dimensional solid structures holds great benefits for analyses. Practical performances of the present
system are demonstrated through several mesh generations for 3D geometry.

Key Words : Automatic Mesh Generation, Bubble Method, Fuzzy Knowledge Processing, Delaunay Triangulation
Method, Finite Element Analysis

1. Introduction whose fully automation is very difficult in three-dimen-

sional (3D) cases, has become the most critical issue in a

Loads for pre-processing and post-processing are in-
creasing rapidly in accordance with an increase of scale
~and complexity of analysis models to be solved.
Particularly, the mesh generation process, which influen—
ces computational accuracy as well as efficiency and
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whole process of the finite element (FE) analyses. In this
respect, various researches{1-7] have been performed on
the development of automatic mesh generation
techniques. Also, many researchers have endeavored to
improve the performance of the finite element method.
Among mesh generation methods, the tree model
method[6] can generate graded meshes and it uses a
reasonably small amount of computer time and storage.
However, it is, by nature, not possible to arbitrarily
control the changing rate of mesh size with respect to
location, so that some smaller projection and notch etc.
are sometimes omitted. Also, domain decomposition
method[7] does not always succeed, and a designation
of such sub-domains is very tedious for uses in
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three—dimensional cases.

The present authors have developed an automatic FE
mesh generation technique, which is based on the fuzzy
theoryl8,9] and computational geometry technique, is in-
corporated into the system, together with one of com-
mercial solid modelers. In the present study, to support
the FE analysis system which require such special
mesh, an automatic bubble mesh generation combined
with the automatic mesh generation system.

2. Bubble Method

Bubble meshing is summarized as a sequence of two
steps: (1) packing circles or spheres, called bubbles,
closely in a domain, and (2) connecting their centers by
Delaunay triangulation, which selects the best topo—
logical connection for a set of nodes by avoiding small
angles.

2.1 Bubble Packing

The key element of bubble meshing lies in the first
step, that is, the optimization of mesh node locations by
close packing bubbles. In this method, bubbles move in
a domain until forces between bubbles are stabilized,
and the Delaunay triangulation is then applied to gen—
erate a mesh connecting the nodes defined by the bub-
ble packing. A repulsive or attractive force much like
an Intermolecular van der Waals force is assumed to
exist between two adjacent bubbles. A globally stable
configuration of tightly packed hubbles is determined by
solving the equation of motion.

Delaunay triangles Voronoi Polygons

Packed Bubbles

Fig. 1. Schematics of the Delaunay triangulation, the
Voronoi Polygons, and packed bubbles.

Fig. 1 shows the Delaunay triangulation and the
bubble packing method, and Fig. 2 shows the procedure
of the bubble packing method. Bubble meshing gen-
erates a two-dimensional triangular mesh by the fol-
lowing two steps! (a) Solving the equation of motion on
vertices, edges, and faces{or loops) in that order, (b)
Generation of triangular mesh by connecting the center
points of bubbles by Delaunay Triangulation. Similar
steps are also applied to the generation of three-dimen-—
sional tetrahedral meshes. In this procedure, the mesh
density is needed to determine the radius of bubble. To
handle general bubble spacing, we adopted a function of
bubble density distribution. In the present system each
bubble data are stored as a tree structure of domain
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such as vertices, edges, surfaces. In general, it is not so
easy to well control element size for a complex
geometry. A bubble density distribution over a whole
geometry model can be constructed. A user selects
some of local bubble patterns, depending on their analy-
sis purposes, and designates where to locate them.

G,

(a) Vertex bubble (b} Edge bubbles

(¢) Loop bubbles
Fig. 2. Procedure of the bubble mesh

(d) Final mesh

2.2 Dynamic bubbles
A force function f{r) between two adjacent bubbles is
shown in Fig. 3. If f{r}=r0, where 10 is defined to be
ry=0.5(d,+ d,) (n

where d;, d; denote diameters of two adjacent bubbles.

The two hubbles are defined to be in a stable distance.
If f(r} is larger than zero, a repulsive force is assumed to
exist between two bubbles, and if f(r) is smaller than
zero, a attractive force is assumed to exist between
them. The kinetic equation is written as follows:

o

e

f(r)

/(a) Repelling force Fv*

/

s (b) Stable distance

e

1.5y

s
™ (c) Attracting force ﬁ

Fig. 3. Interbubble proximity-based forces

0 ‘o

9
d’s; ds;

R '4)
miﬁ-ﬁ—cg—fﬁ(t), 1=1,2,....n (2)

where m; denotes the mass of bubble, ¢ the coefficient
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of viscosity, s; the position of the ith bubble and fi(t)
the force between two adjacent bubbles. The system of
equation (2) describes the process of physical relaxa-
tion, which eventually moves the bubbles to proper
equilibrium positions. The force fi(t), which depends on
the position s; and the distances from its center to the
centers of the neighboring bubbles, is modeled by the
van der Waals force.

By solving above equaiton by Runge-Kutta method,
the optimized bubble configuration is obtained. In the
process of the optimization, population of bubbles is
adaptively controlled using fuzzy knowledge process.
That is, excess bubbles which significantly overlap
their neighbors are removed, and new bubbles are add-
ed around open bubbles which lack the appropriate
number of neighboring bubbles. After the optimization
of the bubble configuration, a triangular mesh is gen-—
erated by using Delaunay triangulation.

3. Element Generation

The Delaunay triangulation method [1,3] is utilized to
generate tetrahedral elements from numerous bubbles
given in a geometry. In this section, briefly describes
this method.

Let N be a set of nodes, it has the property that the
circumcircle of any triangle in the triangulation contains
no point of N in its interior. The remaining points in N
will be iteratively added to the triangulation. After each
point is added, it will be connected to the vertices of its
enclosing triangle. (See Fig. 4) All internal edges of a
triangulation of a finite set N are locally optimal if no
point of N is interior to any circumcircle of a triangle.
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Fig. 4. Example showing a Delaunay triangulation

The speed of element generation by the Delaunay
triangulation method is proportional to the number of
nodes. If this method is utilized to generate elements in
a geometry with indented shape, elements are inevitably
generated even outside the geometry. However, such
mis-match elements can be removed by performing the
IN / OUT check for gravity center points of such
elements. In addition, it is necessary to avoid the gen-
eration of those mis—match elements crossing domain
boundary by setting node densities on edges to be
slightly higher than those inside the domain near the
boundaries.

4. Fuzzy Theory

4.1 Control of bubble patterns by fuzzy knowledge

In this section, the connecting process of locally opti~
mum bubble images is dealt with using the fuzzy
knowledge processing technique. Performances of auto-
matic mesh generation methods based on node gen-
eration algorithms depend on how to control node spac-
ing functions or node density distributions and how to
generate nodes. The basic concept of the present mesh
generation algorithm is originated from the imitation of
mesh generation processes by human experts of finite
element analyses. One of the aims of this algorithm is
to transfer such experts’ techniques to beginners.

In general, it is not so easy to well control element
size for a complex geometry. A node density dis—
tribution over a whole geometry model is constructed
as follows. The present system stores several local
bubble patterns such as the pattern suitable to well
capture stress concentration, the pattern to subdivide a
finite domain uniformly, and the pattern to subdivide a



HEjolga HEIME of

whole domain uniformly. A user selects some of those
local bubble patterns, depending on their analvsis pur—
poses, and designates where to locate them.

When these stress concentration fields exist closely
to each other in the same analysis domain, a simple su-
perposition of both local bubble patterns.

In the present method, the field A close to the hole
and the field B close to the crack-tip are defined in
terms of the membership functions used in the fuzzy
set theory. For the purpose of simplicity, each member—
ship function is given a function in the figure. In prac-
tice the membership function can be cxpressed as p(x,
v} in this particular example, and in 3D cases it is a
function of 3D coordinates, ie u(x, y, z). This proce—
dure of node generation, 1.e. the connection procedure of
both node patterns, is summarized as follows :

< I pAlxp, vp) > uBxp, vp) for a node p(xp, vp) he-
longing to the pattern A, then the node p is gen-—
erated, and otherwise p is not generated.

- If pAlxq, vg) = uB(xq, vq) for a node qlxq, yq) be-
longing to the pattern B, then the node g is g e n-
erated, and otherwise g 1s not generated.

It is apparent that the above algorithm can be casily
extended to 3D problems and any number of node
patterns. In addition, since finer node patlerns are gen—
erally required to place near stress concentration sour-
ces, it is convenient to let the membership function cor-
respond to node density as well.

2.2 Fuzzy control of bubble position

The fuzzy rules employed here can be generalized as

RULE : IF pis A", THEN q is B

where RULE' is the i-th fuzzy rule, A' and B the fuzzy
variables, p the value of node, and Ap the difference of
the current and the next wvalues of p, ie
Ipn+D-pwl(n:  the iteration number of node),
respectively. The labels of the fuzzy variables are de
fined as follows.

As for Ai,

LARGE - p
MEDIUM —

—
o

much larger than 1.0.

p is larger than 1.0.
SMALL — p is little larger than 1.0.
As for I3,
LARGE — g is positive and large.
MEDIUM — g is positive and medium.

SMALL  — g is positive and small.

—_

As shown in Fig. 5, trapezoid type membership func-
tions are utilized as those of labes of A" and B from
the viewpoint of simplicity.

Small Medium Large
1.0 — m /,M
\\ fj \\/
A )
/
/
0.0
1.00 1.02 1.05 1.08 110 p
0.00 0.02 0.03 0.04 008 q

Fig. 5. Membership functions of labels of Al(p) and
Biq)

5. Examples and Discussions

The performance of the system is demonstrated
through the mesh generation of several geometries. Fig.
6 shows the screen of the system, and Figs. 7 and 8
show the uniform bubble and mesh.

In case of a complex geometry as shown in Fig. 9, a
uniform mesh and a nonuniform mesh were connected
very smoothly. Bubble and elements are generated in
about 2 minutes and in about 3 minutes, respectively.
The mesh consists of 6.896 tetrahedral elements.

Fig. 7. Bubble image and mesh of cylinder
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Tig. 8. Bubble image and mesh

Fig. 9. Bubble image and mesh of cylinder

Also, Fig. 10, finer elements are also observed around
the edge of the plate on this side. When the cylinder is
connected to the plate near its edge, such a mesh pat—
tern is desirable to calculate accurately the influence of
the plate’s edge to the stress concentration field around
the junction.

To complete this mesh, the following two bubble
patterns are utilized ; (a) the base bubble pattern in
which nodes are generated with uniform spacing over a
whole analysis domain, (b) a special bubble pattern for
stress concentration of edge corners.

6. Conclusions

A novel automatic finite element mesh generation us-
ing bubble packing is developed. Bubbles on domain can
be controlled in order to obtain an improve quality of
mesh in three-dimensional problems. The key features
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of the present algorithm are an easy control of complex
3D bubble density distribution with a fewer input data
by means of the fuzzy knowledge processing technique.
The effective of the present system is demonstrated
through several mesh generations for 3D structures.

(a) Cylinder is connected around the center of the plate

/
)

A

(b) Cylinder is connected near the edge of the plate

Fig. 10. Example of mesh subdivisions of a junction of
cylinder and plate

In the next version, the present system will be com-
plemented to hexahedral mesh generation.
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