• Title/Summary/Keyword: 퍼셉트론

Search Result 391, Processing Time 0.036 seconds

Run-off Forecasting using Distributed model and Artificial Neural Network model (분포형 모형과 인공신경망을 활용한 유출 예측)

  • Kim, Won Jin;Lee, Yong Gwan;Jung, Chung Gil;Kim, Seong Joon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.35-35
    • /
    • 2019
  • 본 연구에서는 분포형 수문 모형 Drying Stream Assessment Tool and Water Flow Tracking (DrySAT-WTF)을 활용해 우리나라의 1976년부터 2015년까지의 유출량을 산정하고, 이를 다층퍼셉트론(Multi Layer Perceptron) 인경신경망 모형(Artificial Neural Network Model)에 적용해 미래 유출을 예측하였다. DrySAT-WFT은 전국 표준 유역을 대상으로 하천 건천화 원인 추적 및 평가를 위해 개발된 모형으로 유출모의를 위한 기상자료 외에 건천화 영향 요소를 고려하기 위한 산림 높이, 도로망, 지하수 이용량, 토지이용, 토심 변화에 대한 DB를 적용 가능한 것이 특징이다. DrySAT-WFT를 위한 기상자료로 모의 기간에 대한 일별 강우량, 상대습도, 평균풍속, 평균 및 최고, 최저 기온, 일조시간을 구축하였으며, 연대별 건천화 영향 요소 DB를 구축하여 적용하였다. 전국 다목적 댐 보 12지점의 유량을 활용해 모형의 보정(2005-2010) 및 검증(2011-2015)을 실시한 결과, 평균 결정계수(Coefficient of determination, $R^2$)는 0.76, 모형효율성계수(Nash-Sutcliffe efficiency, NSE)는 0.62, 평균제곱근오차(average root mean square error, RMSE)는 3.09로 신뢰성 있는 유출 모의 결과를 나타내었다. 미래 유출량 예측을 위한 MLP-ANN은 1976년부터 2015년까지의 유출 모의 결과를 Training Set으로 훈련하여 $R^2$가 0.5 이상이 되어 신뢰성을 확보하였고, 2016년부터 2018년까지의 기간을 1개월 단위로 실제 유출량과 예측 유출량을 비교하며 적용성을 검증 및 향상시켰다.

  • PDF

Pose Classification and Correction System for At-home Workouts (홈 트레이닝을 위한 운동 동작 분류 및 교정 시스템)

  • Kang, Jae Min;Park, Seongsu;Kim, Yun Soo;Gahm, Jin Kyu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.9
    • /
    • pp.1183-1189
    • /
    • 2021
  • There have been recently an increasing number of people working out at home. However, many of them do not have face-to-face guidance from experts, so they cannot effectively correct their wrong pose. This may lead to strain and injury to those doing home training. To tackle this problem, this paper proposes a video data-based pose classification and correction system for home training. The proposed system classifies poses using the multi-layer perceptron and pose estimation model, and corrects poses based on joint angels estimated. A voting algorithm that considers the results of successive frames is applied to improve the performance of the pose classification model. Multi-layer perceptron model for post classification shows the highest accuracy with 0.9. In addition, it is shown that the proposed voting algorithm improves the accuracy to 0.93.

Image Mood Classification Using Deep CNN and Its Application to Automatic Video Generation (심층 CNN을 활용한 영상 분위기 분류 및 이를 활용한 동영상 자동 생성)

  • Cho, Dong-Hee;Nam, Yong-Wook;Lee, Hyun-Chang;Kim, Yong-Hyuk
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.9
    • /
    • pp.23-29
    • /
    • 2019
  • In this paper, the mood of images was classified into eight categories through a deep convolutional neural network and video was automatically generated using proper background music. Based on the collected image data, the classification model is learned using a multilayer perceptron (MLP). Using the MLP, a video is generated by using multi-class classification to predict image mood to be used for video generation, and by matching pre-classified music. As a result of 10-fold cross-validation and result of experiments on actual images, each 72.4% of accuracy and 64% of confusion matrix accuracy was achieved. In the case of misclassification, by classifying video into a similar mood, it was confirmed that the music from the video had no great mismatch with images.

A Multilayer Perceptron-Based Electric Load Forecasting Scheme via Effective Recovering Missing Data (효과적인 결측치 보완을 통한 다층 퍼셉트론 기반의 전력수요 예측 기법)

  • Moon, Jihoon;Park, Sungwoo;Hwang, Eenjun
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.8 no.2
    • /
    • pp.67-78
    • /
    • 2019
  • Accurate electric load forecasting is very important in the efficient operation of the smart grid. Recently, due to the development of IT technology, many works for constructing accurate forecasting models have been developed based on big data processing using artificial intelligence techniques. These forecasting models usually utilize external factors such as temperature, humidity and historical electric load as independent variables. However, due to diverse internal and external factors, historical electrical load contains many missing data, which makes it very difficult to construct an accurate forecasting model. To solve this problem, in this paper, we propose a random forest-based missing data recovery scheme and construct an electric load forecasting model based on multilayer perceptron using the estimated values of missing data and external factors. We demonstrate the performance of our proposed scheme via various experiments.

Machine Learning-based Quality Control and Error Correction Using Homogeneous Temporal Data Collected by IoT Sensors (IoT센서로 수집된 균질 시간 데이터를 이용한 기계학습 기반의 품질관리 및 데이터 보정)

  • Kim, Hye-Jin;Lee, Hyeon Soo;Choi, Byung Jin;Kim, Yong-Hyuk
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.4
    • /
    • pp.17-23
    • /
    • 2019
  • In this paper, quality control (QC) is applied to each meteorological element of weather data collected from seven IoT sensors such as temperature. In addition, we propose a method for estimating the data regarded as error by means of machine learning. The collected meteorological data was linearly interpolated based on the basic QC results, and then machine learning-based QC was performed. Support vector regression, decision table, and multilayer perceptron were used as machine learning techniques. We confirmed that the mean absolute error (MAE) of the machine learning models through the basic QC is 21% lower than that of models without basic QC. In addition, when the support vector regression model was compared with other machine learning methods, it was found that the MAE is 24% lower than that of the multilayer neural network and 58% lower than that of the decision table on average.

Neural network analysis using neuralnet in R (R의 neuralnet을 활용한 신경망분석)

  • Baik, Jaiwook
    • Industry Promotion Research
    • /
    • v.6 no.1
    • /
    • pp.1-7
    • /
    • 2021
  • We investigated multi-layer perceptrons and supervised learning algorithms, and also examined how to model functional relationships between covariates and response variables using a package called neuralnet. The algorithm applied in this paper is characterized by continuous adjustment of the weights, which are parameters to minimize the error function based on the comparison between the actual and predicted values of the response variable. In the neuralnet package, the activation and error functions can be appropriately selected according to the given situation, and the remaining parameters can be set as default values. As a result of using the neuralnet package for the infertility data, we found that age has little influence on infertility among the four independent variables. In addition, the weight of the neural network takes various values from -751.6 to 7.25, and the intercepts of the first hidden layer are -92.6 and 7.25, and the weights for the covariates age, parity, induced, and spontaneous to the first hidden neuron are identified as 3.17, -5.20, -36.82, and -751.6.

Artificial Intelligence based Threat Assessment Study of Uncertain Ground Targets (불확실 지상 표적의 인공지능 기반 위협도 평가 연구)

  • Jin, Seung-Hyeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.6
    • /
    • pp.305-313
    • /
    • 2021
  • The upcoming warfare will be network-centric warfare with the acquiring and sharing of information on the battlefield through the connection of the entire weapon system. Therefore, the amount of information generated increases, but the technology of evaluating the information is insufficient. Threat assessment is a technology that supports a quick decision, but the information has many uncertainties and is difficult to apply to an advanced battlefield. This paper proposes a threat assessment based on artificial intelligence while removing the target uncertainty. The artificial intelligence system used was a fuzzy inference system and a multi-layer perceptron. The target was classified by inputting the unique characteristics of the target into the fuzzy inference system, and the classified target information was input into the multi-layer perceptron to calculate the appropriate threat value. The validity of the proposed technique was verified with the threat value calculated by inputting the uncertain target to the trained artificial neural network.

Prediction of Slope Failure Arc Using Multilayer Perceptron (다층 퍼셉트론 신경망을 이용한 사면원호 파괴 예측)

  • Ma, Jeehoon;Yun, Tae Sup
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.8
    • /
    • pp.39-52
    • /
    • 2022
  • Multilayer perceptron neural network was trained to determine the factor of safety and slip surface of the slope. Slope geometry is a simple slope based on Korean design standards, and the case of dry and existing groundwater levels are both considered, and the properties of the soil composing the slope are considered to be sandy soil including fine particles. When curating the data required for model training, slope stability analysis was performed in 42,000 cases using the limit equilibrium method. Steady-state seepage analysis of groundwater was also performed, and the results generated were applied to slope stability analysis. Results show that the multilayer perceptron model can predict the factor of safety and failure arc with high performance when the slope's physical properties data are input. A method for quantitative validation of the model performance is presented.

Long term discharge simulation using an Long Short-Term Memory(LSTM) and Multi Layer Perceptron(MLP) artificial neural networks: Forecasting on Oshipcheon watershed in Samcheok (장단기 메모리(LSTM) 및 다층퍼셉트론(MLP) 인공신경망 앙상블을 이용한 장기 강우유출모의: 삼척 오십천 유역을 대상으로)

  • Sung Wook An;Byng Sik Kim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.206-206
    • /
    • 2023
  • 지구온난화로 인한 기후변화에 따라 평균강수량과 증발량이 증가하며 강우지역 집중화와 강우강도가 높아질 가능성이 크다. 우리나라의 경우 협소한 국토면적과 높은 인구밀도로 기후변동의 영향이 크기 때문에 한반도에 적합한 유역규모의 수자원 예측과 대응방안을 마련해야 한다. 이를 위한 수자원 관리를 위해서는 유역에서 강수량, 유출량, 증발량 등의 장기적인 자료가 필요하며 경험식, 물리적 강우-유출 모형 등이 사용되었고, 최근들어 연구의 확장성과 비 선형성 등을 고려하기 위해 딥러닝등 인공지능 기술들이 접목되고 있다. 본 연구에서는 ASOS(동해, 태백)와 AWS(삼척, 신기, 도계) 5곳의 관측소에서 2011년~2020년까지의 일 단위 기상관측자료를 수집하고 WAMIS에서 같은 기간의 오십천 하구 일 유출량 자료를 수집 후 5개 관측소를 기준으로Thiessen 면적비를 적용해 기상자료를 구축했으며 Angstrom & Hargreaves 공식으로 잠재증발산량 산정해 3개의 모델에 각각 기상자료(일 강수량, 최고기온, 최대 순간 풍속, 최저기온, 평균풍속, 평균기온), 일 강수량과 잠재증발산량, 일 강수량 - 잠재증발산량을 학습 후 관측 유출량과 비교결과 기상자료(일 강수량, 최고기온, 최대 순간 풍속, 최저기온, 평균풍속, 평균기온)로 학습한 모델성능이 가장 높아 최적 모델로 선정했으며 일, 월, 연 관측유출량 시계열과 비교했다. 또한 같은 학습자료를 사용해 다층 퍼셉트론(Multi Layer Perceptron, MLP) 앙상블 모델을 구축하여 수자원 분야에서의 인공지능 활용성을 평가했다.

  • PDF

Optimization Of Water Quality Prediction Model In Daechong Reservoir, Based On Multiple Layer Perceptron (다층 퍼셉트론을 기반으로 한 대청호 수질 예측 모델 최적화)

  • Lee, Hankyu;Kim, Jin Hui;Byeon, Seohyeon;Park, Kangdong;Shin, Jae-ki;Park, Yongeun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.43-43
    • /
    • 2022
  • 유해 조류 대발생은 전국 각지의 인공호소나 하천에서 다발적으로 발생하며, 경관을 해치고 수질을 오염시키는 등 수자원에 부정적인 영향을 미친다. 본 연구에서는 인공호소에서 발생하는 유해 조류 대발생을 예측하기 위해 심층학습 기법을 이용하여 예측 모델을 개발하고자 하였다. 대상 지점은 대청호의 추동 지점으로 선정하였다. 대청호는 금강유역 중류에 위치한 댐으로, 약 150만명에 달하는 급수 인구수를 유지 중이기에 유해 남조 대발생 관리가 매우 중요한 장소이다. 학습용 데이터 구축은 대청호의 2011년 1월부터 2019년 12월까지 측정된 수질, 기상, 수문 자료를 입력 자료를 이용하였다. 수질 예측 모델의 구조는 다중 레이어 퍼셉트론(Multiple Layer Perceptron; MLP)으로, 입력과 한 개 이상의 은닉층, 그리고 출력층으로 구성된 인공신경망이다. 본 연구에서는 인공신경망의 은닉층 개수(1~3개)와 각각의 레이어에 적용되는 은닉 노드 개수(11~30개), 활성함수 5종(Linear, sigmoid, hyperbolic tangent, Rectified Linear Unit, Exponential Linear Unit)을 각각 하이퍼파라미터로 정하고, 모델의 성능을 최대로 발휘할 수 있는 조건을 찾고자 하였다. 하이퍼파라미터 최적화 도구는 Tensorflow에서 배포하는 Keras Tuner를 사용하였다. 모델은 총 3000 학습 epoch 가 진행되는 동안 최적의 가중치를 계산하도록 설계하였고, 이 결과를 매 반복마다 저장장치에 기록하였다. 모델 성능의 타당성은 예측과 실측 데이터 간의 상관관계를 R2, NSE, RMSE를 통해 산출하여 검증하였다. 모델 최적화 결과, 적합한 하이퍼파라미터는 최적화 횟수 총 300회에서 256 번째 반복 결과인 은닉층 개수 3개, 은닉 노드 수 각각 25개, 22개, 14개가 가장 적합하였고, 이에 따른 활성함수는 ELU, ReLU, Hyperbolic tangent, Linear 순서대로 사용되었다. 최적화된 하이퍼파라미터를 이용하여 모델 학습 및 검증을 수행한 결과, R2는 학습 0.68, 검증 0.61이었고 NSE는 학습 0.85, 검증 0.81, RMSE는 학습 0.82, 검증 0.92로 나타났다.

  • PDF