• Title/Summary/Keyword: 팽창 구조

Search Result 645, Processing Time 0.024 seconds

Effects of Micropores on the Freezing-Thawing Resistance of High Volume Slag Concrete (슬래그를 다량 치환한 콘크리트의 동결융해 저항성능에 미치는 미세공극의 영향)

  • Kim, Rae-Hwan;Kim, Gyu-Yong;Lee, Bo-Kyeong;Shin, Kyoung-Su;Song, Gwon-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.4
    • /
    • pp.67-74
    • /
    • 2015
  • In this study, effects of micropores on the freezing-thawing resistance of high volume slag concrete are reviewed. Concrete was made with slag which contains the ground granulated blast furnace slag(GGBS) and the pig iron preliminary treatment slag(PS) by replacing 0, 40, 70 %, then compressive strength, freezing-thawing resistance, micropores were reviewed. Also, specified design strength, target air contents were set. Deterioration was induced by using 14-day-age specimen which has low compressive strength for evaluating deterioration by freeze-thawing action. As results of the experiment, despite of specified design strength which has been set similarly and ensured target air contents, the pore size distribution of the concrete showed different results. Micropores in GGBS70 specimen have small amount of water which is likely to freeze because there is small amount of pore volume of 10~100 nm size at 0 cycle which has not been influenced by freezing-thawing. For these reasons, it was confirmed that the freezing-thawing resistance performance of GGBS70 is significantly superior than other specimens because relatively small expansion pressure is generated compared to the other specimens.

Polyimide Films Using Dianhydride Containing Ester Linkages and Various Amine Monomers (에스터기를 가지는 무수물과 다양한 아민 단량체를 이용한 폴리이미드 필름)

  • Choi, Chang Hwon;Chang, Jin-Hae
    • Polymer(Korea)
    • /
    • v.37 no.5
    • /
    • pp.618-624
    • /
    • 2013
  • Hydroquinone bis(trimellitic anhydride) (HQ-TA) was synthesized from trimellitic anhydride chloride and hydroquinone. Poly(amic acid)s (PAAs) were synthesized by reacting a HQ-TA with six different diamines, which were cyclized to yield polyimides (PIs) containing ester linkages by chemical- and thermal-imidization methods. The various PIs were synthesized from structurally different aromatic diamines. The glass transition temperatures ($T_g$) were in the range of 167-$215^{\circ}C$, and the decomposition temperatures (${T_D}^i$) were in the range of $364-451^{\circ}C$. The maximum improvements in coefficient of thermal expansion (CTE) and barrier to oxygen permeation were observed in PIs using TFB (3.23 $ppm/^{\circ}C$) and 4,4-ODA (< $10^{-2}cc/m^2/day$), respectively. The PI films possessed a transmittance of 65-89% at 500 nm and had a yellowish color with a yellow index (YI) of 3.01-69.52.

An Experimental Study on the Underground Structure Apply Properties to Salt Water Environment of Pre-hydrated Bentonite Waterproofing. (사전수화 벤토나이트 방수재의 염수환경 지하구조물 적용 특성에 관한 실험적 연구)

  • Lee, Jung-Hoon;Choi, Sung-Min;Choi, Sung-Min;Oh, Sang Keun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.833-836
    • /
    • 2008
  • In this study, we would like to study on the apply properties to salt water environment of pre-hydrated bentonite for complement problem that water leakage to permit salt water that existing bentonite does not initial swelling. Accordingly, execute viscosity properties, swelling properties, permeability and confirmed apply properties to salt water environment. Did not permit initial permeable in test result salt water environment, and permeable did not happen until 72 hours by maximum $3kgf/cm^2$ water pressure. Fresh water environment enough progress of gelation confirm that viscosity and swelling properties confirmation result and as delamination phenomenon of platy formation looked in salt water environment but this as bentonite hydrates crystallization layer swelling that is done consider. Synthetic study results, if compaction condition such as press layer is formed to bentonite upper, applied to the salt water environment of the underground structures of expectations.

  • PDF

A Study on the Failure Behavior of Overhanging Geosynthetic-Reinforced Soil Structure Considering Dilatancy Characteristics of Compacted Soil (다짐토의 다일러턴시 특성을 고려한 역경사형 토목섬유 보강토 구조물의 파괴 거동 분석)

  • Kim Eun-Ra;Kang Ho-Keun
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.9
    • /
    • pp.65-75
    • /
    • 2004
  • In this paper, a mechanism of the soil structure reinforced by geosynthetics is discussed. The reinforcing mechanism is interpreted as an effect arising from the reinforcement works preventing the dilative deformation (negative dilatancy) of soil under shearing. A full-scale in-situ model test was carried out in Kanazawa of Japan (1994), and in the laboratory test the strength and the characteristics of deformation conducting a constant volume shear test are examined. The parameters needed in the FEM are also applied by using the experimental data. The elasto-plastic finite element simulation is carried out, and the results are quantitatively compared with that of experiment. As a results, it is known that the theoretical predictions could explain effectively the experimental results which are obtained by a full-scale in-situ model test.

Numerical Analysis on the Effect of Increasing Stiffness of Geosynthetics on Soil Displacement and Pile Efficiency in Piled Embankment on Soft Soil (성토지지말뚝구조에서 토목섬유 인장강성 증가에 따른 변위 억제 및 말뚝효율 증가량에 대한 수치해석적 분석)

  • Lee, Taehee;Lee, Su-Hyung;Lee, Il-Wha;Jung, Young-Hoon
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.4
    • /
    • pp.31-43
    • /
    • 2015
  • A numerical analysis on the effect of increasing tensile stiffness of the geosynthetics on the soil displacement and pile efficiency was conducted. Parametric studies by changing the stiffness of soft soil, internal friction and dilatancy angles of the embankment material, and flexual stiffness of the composite layer including the geosynthetics were carried out. In general, increasing stiffness of the geosynthetics improves the pile efficiency, whereas the amount of its improvement depends on the condition of parameters. In case of the sufficiently low stiffness of the soft soil or high flexual stiffness of the composite layer including the geosynthetics, a noticeable increase in the pile efficiency can be observed. When the stiffness of the soft soil is very low, the increase in the stiffness of the geosynthetics can significantly reduce the vertical displacement in the piled embankment. When the flexual stiffness of the composite layer is sufficiently high, increasing stiffness of the geosynthetics can greatly improve the pile efficiency.

Analysis for Nonlinear Behavior of Concrete Panel Considering Steel Bar Buckling (철근 좌굴을 고려한 콘크리트 패널의 비선형 거동에 대한 해석)

  • Lee, Sang-Sup;Park, Keum-Sung;Bae, Kyu-Woong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.6
    • /
    • pp.130-137
    • /
    • 2018
  • Many constitutive models for concrete have been developed to predict the nonlinear behavior of concrete members considerably. The constitutive model for reinforcing bar that include the tension stiffening effect due to the bond characteristics between steel bars and concrete is being studied but the bilinear model is generally used. It was found that the buckling of the longitudinal reinforcing bars is controlled the nonlinear behavior of hybrid precast concrete panel, which is being developed for core wall. In this study, the constitutive models that can consider the embedding and buckling effects of reinforcing bar are investigated and a new model combing these constitutive models is proposed. In order to verify the proposed model, the analysis results are compared with experimental results of the concrete wall and hybrid precast concrete panel. The analysis of embedding-effect-only modeling predicted that the deformation increases continually without the decrease in the load carrying capacity. However, the analysis results of proposed model showed good agreement with some experimental results, thus verifying the proposed computational model.

An Application of Elasto-Plastic Model to Overhanging Geosynthetic-Reinforced Soil Structure (역경사형 토목섬유 보강토 구조물에 탄소성 모델의 적용)

  • Kim, Eun-Ra;Iizuka, Atsushi;Kim, You-Seong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.3 no.4
    • /
    • pp.3-12
    • /
    • 2004
  • In this paper, a mechanism of the soil structure reinforced by geosynthetics is discussed. The reinforcing mechanism is interpreted an effect arising from the reinforcement works so as to prevent the dilative deformation (negative dilatancy) of soil under shearing. A full-scale in-situ model test was carried out in Kanazawa of Japan(1994) and in the laboratory test the strength and the characteristics of deformation conducting a constant volume shear test are examined. The parameters needed in the FEM are also applied by using the experimental data. The elasto-plastic finite element simulation is carried out, and the results are quantitatively compared with that of experiment. As a results, it is known that the theoretical predictions could be explained effectively the experimental results which are obtained by a full-scale in-situ model test.

  • PDF

An Example of Changed Design through the Face Mapping and Slope Analysis (절토사면 현황도 작성 및 분석에 따른 설계변경 사례연구)

  • Lee, Byung-Joo;Chae, Byung-Gon;Lee, Kyoung-Mi
    • The Journal of Engineering Geology
    • /
    • v.24 no.1
    • /
    • pp.137-146
    • /
    • 2014
  • The geology of the study area which is located in Samkoe-dong, Dong-gu, Daejeon city comprises black slate, limestone, and pebble-bearing phyllitic rock as meta-sedimentary rocks; and biotite granite and quartz porphyry intrusions. Face mapping revealed sliding in three or four sites of contained coaly slate, where the dip of the foliation and other discontinuities is parallel to the surface slope. The cause of the slope sliding is this parallelism as well as the swelling of the coaly slate when wet. In contrast, the slop on the opposite side of the road is relatively stable because the dip of the foliation and other discontinuities are oblique or normal to the surface slope. To ensure slope stability, a cut-and-cover tunnel was designed and constructed for the new road.

A Study on the Characteristic of Interaction Model for Implementation of Richmedia Contents (리치미디어 컨텐츠 구현에 있어 상호작용 모델)

  • 김민수
    • Archives of design research
    • /
    • v.17 no.1
    • /
    • pp.201-210
    • /
    • 2004
  • The web as a sign synthesis text has become a kernel for incorporeal knowledge as well as a communication model through the ubiquitous environment all over the world. The evaluation of the communication model, which is essential for the information structure, acts as an important basis on determining the quality of the web contents. In this study, the development of the progress of the communication of semantic meaning in the construction of the information structure was analyzed in views of the form, the function, and the emotional effect of the rich media contents of the web. The transformation process from the initial access elements through the final selection elements was suggested as the communication model and the effects of the function of the information in the web on the process was assessed by the engineering and linguistic models of Shannon, Weaver, and Roman Jakobson. The results of this study showed that the environments such as the speed, the memory space, data compression technique, and data filtering have influences on the web contents expression and the evaluation of the communication model in connection with the environments is the basis in the information structure.

  • PDF

Characterization of Poly(lactic acid) Foams Prepared with Supercritical Carbon Dioxide (초임계 이산화탄소를 이용하여 제조한 Poly(lactic acid) 발포체의 특성 분석)

  • Shin, Ji Hee;Lee, Hyun Kyu;Song, Kwon Bin;Lee, Kwang Hee
    • Polymer(Korea)
    • /
    • v.37 no.6
    • /
    • pp.685-693
    • /
    • 2013
  • The foams of a poly(lactic acid) modified by the reactive compounding were produced with the batch foaming technique using supercritical $CO_2(scCO_2)$. Experiments were performed at $105{\sim}135^{\circ}C$ and 12~24 MPa. The blowing ratio and foam structure were significantly affected by changing the temperature and pressure conditions in the foaming process. The blowing ratio first increased with increasing foaming temperature and saturation pressure, reached a maximum and then decreased with a further increase in the foaming temperature and saturation pressure. Decreasing the rate of depressurization permitted a longer period of cell growth and therefore larger microcellular structures were obtained.