• Title/Summary/Keyword: 팽창재료

Search Result 482, Processing Time 0.029 seconds

Analysis of Temperature dependent Thermal Expansion Behavior of $\textrm{SiC}_\textrm{p}/\textrm{Al}_2\textrm{O}_{3f}/\textrm{Al}$ Composites ($\textrm{SiC}_\textrm{p}/\textrm{Al}_2\textrm{O}_{3f}/\textrm{Al}$ 복합재료의 온도에 따른 열팽창 특성 해석)

  • 정성욱;남현욱;정창규;한경섭
    • Composites Research
    • /
    • v.16 no.1
    • /
    • pp.1-12
    • /
    • 2003
  • This study developed SiC$_{p}$/A1$_2$O$_3$$_{f}$/Al composites for electronic packaging to which reinforcements were added with the volume fractions of 49%, 56% and 63% by the squeeze casting method. 0.8 wt. % of the inorganic binder as well as the A1$_2$O$_3$ fiber and SiC Particles with the volume fraction of 1:10 were added to the composites, which were produced in the newly designed mold. For the produced SiC/Al composites, the CTEs (coefficients of thermal expansion) were measured from 30 to 300 and compared with the FEM numerical simulation to analyze the temperature dependent properties. The experiment showed the CTEs of SiC$_{p}$/A1$_2$O$_3$$_{f}$/Al composites that were intermediate values of those of Rule of Mixture and Turner's Model. The CTEs were close to Turner's Model in the room temperature and approached the Rule of Mixture as the temperature increases. These properties analyzed from the difference of the average stress acting between the matrix and the reinforcements proposed in this study.

A Study on the Effect of Fiber Orientation on Impact Strength and Thermal Expansion Behavior of Carbon Fiber Reinforced PA6/PPO Composites (탄소섬유 강화 PA6/PPO 복합재료의 섬유 배향에 따른 충격강도 및 열팽창 거동에 관한 연구)

  • Won, Hee-Jeong;Seong, Dong-Gi;Lee, Jin-Woo;Um, Moon-Kwang
    • Composites Research
    • /
    • v.27 no.2
    • /
    • pp.52-58
    • /
    • 2014
  • Short fiber reinforced composites manufactured by injection molding have diverse fiber orientations variable with measuring positions even in the same specimen, which is caused by the flow induced fiber orientation. Fiber orientations considerably affect the mechanical and thermal properties of final composite products. In this study, fiber orientation of injection molded carbon fiber reinforced PA6/PPO composite was measured at several points of the specimen by optical microscopy analysis and the corresponding izod impact strength, coefficients of thermal expansion (CTE) were also measured to investigate the influence of local fiber orientation on the mechanical and thermal properties. Izod impact strength where fiber was perpendicular to the direction of crack propagation was higher than where fiber was parallel to the direction, which could be explained be the impact resistance reinforcing mechanism by fiber orientation. CTE was also lower where fiber was parallel to the measurement direction of CTE than where fiber was perpendicular to the direction, which could be also explained by the dimensional stability mechanism by fiber orientation.

Influence of Cement Matrix's Compressive Strength and Replacement of Expansive Admixture on the Mechanical Properties of Synthetic Polyethylene (PE) Fiber-Reinforced Strain-Hardening Cement-Based Composites (SHCCs) (압축강도와 팽창재 대체에 따른 폴리에틸렌 합성섬유로 보강된 변형 경화형 시멘트 복합체의 역학적 특성)

  • Song, Young Jae;Yun, Hyun Do;Min, Byung Sung;Rokugo, Keitetsu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.2
    • /
    • pp.95-103
    • /
    • 2012
  • In order to improve the dimensional stability and mechanical performance of cement-based composites, the effect of an expansive admixture based on calcium sulphoaluminate (CSA) on the shrinkage and mechanical properties of strain-hardening cement-based composite (SHCC), which exhibits multiple cracks and pseudo strain-hardening behavior in the direct tension, is investigated. Polyethylene fibers reinforced SHCC mixtures with three levels (30, 70, and 100MPa) of compressive strength were compared through free shrinkage, compressive strength, flexural strength, and direct tensile strength measurements. The SHCC mixtures were cast with and without replacing 10% of Portland cement content with CSA admixture. According to test results, CSA admixture is effective in reducing shrinkage of SHCC material. SHCC mixture with CSA admixture exhibited a little higher strength than companion mixture without CSA admixture.

Effects of Admixtures in Properties of Polymer Cement Mortar for Concrete Repair (혼화재료가 보수용 폴리머 시멘트 모르타르의 성질에 미치는 영향)

  • Song, Hyung-Soo;Lee, Chin-Yong;Min, Chang-Shik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.1
    • /
    • pp.85-94
    • /
    • 2007
  • The EVA polymer is used as a modifier in the repair mortar, which contains various admixtures and mineral admixtures. It has been reported that the effect of polymer in cement mortar by the cement-polymer ratio only, but effect of admixtures over the polymer mortar was unknown. In this study, the fresh and mechanical properties of polymer cement mortar influenced by the range of admixtures(CSA expansive addictive, CSA accelerator, gypsum, silica fume) ratio were investigated.

Evaluating Shrinkage Characteristic of Ternary Grout for PSC Bridge Using Expansive Additive and Shrinkage Reducing Agent (팽창재 및 수축저감제를 이용한 PSC 교량용 3성분계 그라우트의 수축특성 평가)

  • Yuan, Tian-Feng;An, Gi-Hong;Ryu, Gum-Sung;Koh, Kyoung-Taek;Yoon, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.5
    • /
    • pp.519-525
    • /
    • 2016
  • This paper reports on analyzing the free and restrained shrinkage characteristic of ternary grout used cementitious admixture. In this study, the cementitious admixture was used such as fly ash, ziricania silica fume by combination of expansive additive (a, b) and shrinkage reducing agent. And a number of basic performance tests were conducted to investigate bleeding, volume change, fluidity and compressive strength behavior. According to the results, within appropriate mixing ratio, even the fluidity is not influenced by expansive additive and shrinkage reducing agent, the resistant properties of bleeding, volume change, shrinkage and compressive strength are increased. Comparing with plain grout, the free shrinkage reduced by a minimum of 29% which specimens are added expansive additive and shrinkage reducing agent. The combination of expansive additive a and shrinkage reducing agent is the most effective for reduction of shrinkage. And increasing the mixing ratio of expansive additive and shrinkage reducing agent extended cracking time. Nevertheless, combined addition of expansive additive a 2.0% and shrinkage reducing agent 0.50% has best shrinkage reduction behavior and not appeared cracking. From the above, the mixing ratio of 2.0% of expansive additive a and 0.50% of shrinkage reducing agent is high performance ternary grout for PSC bridge.

A Study on the Residual Expansibility of Electric Arc Furnace Slag Aggregate (전기로슬래그 골재의 잔류팽창성에 대한 고찰)

  • Yoo, Jung-Hoon;Choi, Jae-Jin
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.1
    • /
    • pp.128-135
    • /
    • 2006
  • Steel slag (divided into electric arc furnace slag and convener slag) is being produced by millions of tons per every year in many industrial countries. About 6.5 million tonnes of steel slag is produced yearly as an industrial by-product in Korea. Generally natural aggregate is relatively stable and does not enter into complex chemical reactions with water. Unfortunately, however. steel slag aggregate contains a small amount of free lime. The hydration of free lime makes steel slag aggregate unstable and liable to expand. In this paper, firstly, several aging methods are used in order to decrease the volume expansion of electric arc furnace slag, that is stabilization. The volume expansion of electric arc furnace slag is formulated from the experiment. From the formula, the residual expansibility is predicted with immersion expansion. Compressive strength of concrete with electric arc furnace slag has relation with the residual expansibility in slag aggregate.

  • PDF

열적으로 환원된 그라핀의 1273K에서의 열팽창계수

  • Choi, Seong-Ho;Ju, Hye-Mi;Cho, Kwang-Yeon;Kim, Chang-Yeoul;Shim, Kwang-Bo;Huh, Seung-Hun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.11a
    • /
    • pp.32.1-32.1
    • /
    • 2009
  • 본 연구에서는 산화 그라핀을 환원하여 얻은 그라핀 분말의 고온 XRD 패턴를 통해 그라핀의 열팽창계수를 정량하였다. 산화 그라핀은 Hummer method에 의해 제조되었다. 또한 그라핀은 산화그라핀을 1273K에서 열처리하여 얻어졌다. 1273K에서 그라핀의 열팽창계수($32.9{\pm}1.0$ X 10-6 K-1)는 원료인 흑연(30.3 X 10-6 K-1) 보다 8.6% 더 크게 나타내는것을 알 수 있었다. 그라핀은 화학적 처리에 의한 급격한 면간 팽창과 열처리에 의한 aggregation에 의해 심하게 굴곡지고 적층된 morphology를나타냈다. 이는 박리효과에 의한 것으로 XRD 패턴을 통해그라핀의 층수가 흑연보다 훨씬 적은 것을 알 수 있었다. 이에 따라 면간 규칙적인 배열을 보이는 흑연과는 달리 그라핀은 흑연구조에서 흔히 보이는 disorder 구조인turbostratic 적층 구조를 나타나고 면간인터렉션이 약화되어 열팽창계수가 크게 나타난다고 생각된다.

  • PDF

Carbon/Epoxy Grid Structure with Near Zero CTE in 3-D Direction (3차원 방향으로 극소 열팽창계수를 갖는 탄소/에폭시 복합재료 격자 구조물)

  • 이형주;김창근;윤광준;박훈철
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 1999.11a
    • /
    • pp.272-276
    • /
    • 1999
  • The present paper proposes design and manufacturing methods of the carbon/epoxy square grid structure with near zero-CTE in three geometrical principal directions. Bonding strength of the grid structure is examined for different bonding methods. Numerical examples show that maximum displacement of the composite grid structure is almost zero comparing with that of aluminum grid structure with same dimension under thermal loading.

  • PDF