• Title/Summary/Keyword: 팽창재($CaO-CaSO_4$)

Search Result 12, Processing Time 0.02 seconds

An Experimental Study on the Quality Properties of the Expansive for Dry-Shrinkage Compensation of the On-Dol Floor Mortar (온돌바닥 모르터의 건조수축 보상을 위한 팽창재의 품질특성에 관한 실험연구)

  • 이종열;이웅종;정성철
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.4
    • /
    • pp.314-320
    • /
    • 2001
  • In this paper, the properties of an expansive agent (CaO-CaS $O_4$) for dry shrinkage compensation were investigated by a series of experimental program, which might be used at On-Dol heating system as mortar type. The expansion principle of the CaO-CaS $O_4$ was mainly verified. As a result of this study, the correlation between the content of the expansive agent and the compressive strength was obtained in the form of exponential function(Y = A $e^{-x}$), showing that as the content of expansive agent increased as the expansion performance with the compressive strength increased by only a certain amount. Also, as a results of the analysis of a correlation between the expansive performance and the chemical properties which generally accompanied a part of quality management in manufacturing the expensive cement, the expansive performance was relative to only the contents of the F-CaO among chemical properties(Blaine, +44$\mu\textrm{m}$R, F-CaO, S $O_3$,L.O.I). And it was clarified that the results were relative to the second order function, showing that if the contents of the F-CaO increased the expansive performance Increased.d.

Preparation and Properties of CSA Type Expansive Cement Using Industrial By-products (산업부산물을 이용한 CSA계 팽창시멘트의 제조 및 특성)

  • 송종택;조진상;전준영
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.2
    • /
    • pp.183-192
    • /
    • 2001
  • 산업부산물을 이용하여 3CaO.3Al$_2$O$_3$.CaSO$_4$(C$_4$A$_3$S) 클링커를 합성하였다. 이때, 원료 물질은 산업부산물로 플라이 애쉬, 고로 수쇄 및 괴재슬래그를 $Al_2$O$_3$원으로 그리고 부산석고를 SO$_3$원으로 이용하였으며, CaO원으로 천연석회석을 사용하였다. 제조된 $C_4$A$_3$S 클링커를 CaSO$_4$, CaO를 배합하여 CSA계 팽창재를 제조하였으며, 일반 포틀랜드 시멘트(OPC)에 10 wt.% 첨가하여 수화 및 물성 특성을 조사하였다. 주요 수화생성상은 에트링자이트 및 수산화칼슘이었다. 수화시 에트링자이트의 생성으로 인해 팽창 및 경화체가 치밀화되어 건조수축이 감소되었고, 강도(압출, 인장, 휨)가 향상되었다.

  • PDF

Expansion Factors of Cement Mortar Containing Expanding Admixture (팽창재를 포함한 시멘트 모르터의 팽창 요인)

  • 황인동;염희남;정윤중
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.6
    • /
    • pp.576-582
    • /
    • 2000
  • Two type of expanding cement generally referred to as CSA with Hauyne(3CaO 3Al2O3 CaSO4) and Quick lime(CaO). Hauyne is formed to ettringite when there are presented with CaO and CaSO4, and CaO reacts wtih water to form Ca(OH)2. REcently, the mechanism of compensation and expand mortar or concrete tend to same and it has been used improving on its shrink property. The volume of cement paste varies with its water content shrink with drying and re-wetting. Concrete and mortar works are required shrinking compensation and expansion properties to reduce of potential crack. The use of expansion cement may improve on its shrinking volume changes. CSA dosages for shrinking compensation limited by cement weight, but obtained difference expansion rate with varied W/C or inorganic admixture. This paper studies expansion rate according to expansion cement dosages, water and inorganic admixtures as Silica fume. Therefor, the expansion factor has to considered before the application.

  • PDF

Synthesis and Properties of Calcium Sulfoaluminate Type Expansive (칼슘설포알루미네이트계 팽창재의 제조 및 기초 물성)

  • 전준영;송종택
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.4
    • /
    • pp.388-394
    • /
    • 2000
  • The C4A3S clinker was prepared by the solid-state reaction. The mixture of raw materials; calcite, kaoline and gypsum, was fired at 135$0^{\circ}C$ for 1hr and cooled rapidly in air. C4A3S type expansive was made with C4A3S clinker, CaO and CaSO4. The cement replaced by 10 wt.% C4A3S type expansive was investigated by the measurement of the strength(compressive, tensile, flexural) and length change at various curing conditions. Hydration products were mainly ettringite, monosulfate and Ca(OH)2. The densification and the expansion due to the formation of ettringite during the hydration increased strength and reduced the drying shrinkage of hardened cement.

  • PDF

Resistance to Sea Water of Hardened Cement with Calcium Sulfoaluminate Type Expansive Additives(I) (칼슘 설포알루미네이트계 팽창재를 혼합한 시멘트 경화체의 내해수성(I))

  • 전준영;송종택
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.3
    • /
    • pp.234-240
    • /
    • 2003
  • Hardened cement pastes of OPC which contains 10 wt% CSA type expansive additives were immersed in aqueous solution of 10 wt% MgS $O_4$.7$H_2O$ and then investigated by compressive strength, XRD. SEM and DSC etc.. According to the results including the hydration products and the microstructure of the hardened paste, the case of CSA type expansive additives[No. 6(C/(equation omitted) : 2.29, A/(equation omitted) : 0.16)] prepared from raw materials increased the resistance to $Mg^{2+}$, S $O_4$$^{2-}$ ion diffusion than that of OPC paste due to the densification by the formation of fine ettringite in the first stage and the hydrates according to $\beta$-C$_2$S hydration in the late period.

Preparation and Application of CSA Expansive Additives Using Industrial Wastes (산업폐기물을 이용한 CSA계 팽창재 제조 및 응용)

  • Yoon Sung-Won;Rho Jae-Seong
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.3 s.81
    • /
    • pp.369-374
    • /
    • 2004
  • Calcium sulfoalumiante(CSA) was prepared for using natural calcite($CaCO_3$) and industrial by-products and wastes, such as $Al(OH)_3,\;CaSO_4{\cdot}2H_2O$. The mixture of raw materials was fired at 20, 400, 600, $1200^{\circ}C$ for 1h and cooled rapidly in air. The cement replaced by 10 wt% $C_4A_3S$ expansive additives was investigated by the measurement of the hydration products and compressive strength, setting time, expansion at wet curing condition. $C_4A_3S$ was found in x-ray diffraction pattern over the temperature $1200^{\circ}C$. The setting time or the cement pastes added clinkers fired at different temperature was shorter than ordinary portland cement. The compressive strength was higher than the ordinary portland cement about 20~30%. The mainly hydration products were ettringite, and $Ca(OH)_2$. The expansion due to the formation of ettringite during hydration decreased the drying shrinkage of hardened cement rather than the ordinary portland cement.

A Study on the Mechanical Properties of Polymer Repair-Mortars with CFBC Ash (순환유동층 보일러애시를 활용한 폴리머 보수 모르타르의 역학적 특성에 대한 연구)

  • Kang, Yong Hak;Lim, Gwi Hwan;Shin, Dong Cheol;Choi, Young Cheol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.5
    • /
    • pp.127-132
    • /
    • 2018
  • The amount of generated Circulating Fluidized Bed Combustion ash (CFBC ash) is annually increasing, but most CFBC ash has been landfilled and discarded due to the limited utilization. The major chemical compositions of CFBC ash are $SiO_2$, CaO and $CaSO_4$, which could form hydration products by reacting with water as self-cementing property such as cement. The purpose of the this study is to derive the optimal mix proportions to improve polymer-modified mortar with the use of CFBC ash which has the self-cementing property. In order to develop polymer-modified mortar, three mix proportions were determined, and fundamental properties for the mixtures were obtained. As a result, the optimal mixture containing 10 percent of silica fume, 1.0 percent of polymer and 3.5 percent of expansive additives were proposed in this study.

Effects of Magnesium and Sulfate Ions on the Sulfate Attack Resistance of Alkali-activated Materials (알칼리 활성화 결합재 모르타르의 황산염 침식 저항성에 미치는 마그네슘 및 황산 이온의 영향)

  • Park, Kwang-Min;Cho, Young-Keun;Shin, Dong-Cheol
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.4
    • /
    • pp.415-424
    • /
    • 2017
  • The purpose of this study is to investigate the effect of sulfate (${SO_4}^{2-}$) and magnesium ($Mg^{2+}$) ions on sulfate resistance of Alkali-activated materials using Fly ash and Ground granulated blast furnace slag (GGBFS). In this research, 30%, 50% and 100% of GGBFS was replaced by sodium silicate modules ($Ms(SiO_2/Na_2O)$, molar ratio, 1.0, 1.5 and 2.0). In order to investigate the effects of $Mg^{2+}$ and ${SO_4}^{2-}$, compression strength, weight change, lengh expansion of the samples were measured in 10% sodium sulfate ($Na_2SO_4$), 10%, 5% and 2.5% magnesium sulfate ($MgSO_4$), 10% magnesium nitrate ($Mg(NO_3)_2$), 10% [magnesium chloride ($MgCl_2$) + sodium sulfate ($Na_2SO_4$)] and 10% [magnesium nitrate $(Mg(NO_3)_2$ + sodium sulfate ($Na_2SO_4$)] solution, respectively and X-ray diffraction analysis was conducted after each experiment. As a result, when $Mg^{2+}$ and ${SO_4}^{2-}$ coexist, degradation of compressive strength and expansion of the sample were caused by sulfate erosion. It was found that the reaction of $Mg^{2+}$ with Calcium Silicate Hydrate (C-S-H) occurred and $Ca^{2+}$ was produced. Then the Gypsum ($CaSO_4{\cdot}2H_2O$) was formed due to reaction between $Ca^{2+}$ and ${SO_4}^{2-}$, and also Magnesium hydroxide ($Mg(OH)_2$, Brucite) was produced by the reaction between $Mg^{2+}$ and $OH^-$.

Hydrate Characteristics of Cement Mixtures with Expansion Additive According to Age and Improvement Effect on Initial Strength (팽창재를 사용한 시멘트 혼합물의 재령별 수화물의 특성과 초기강도 개선 효과)

  • Song, Tae-Hyeob;Park, Ji-Sun;Lee, Sea-Hyun
    • Korean Journal of Materials Research
    • /
    • v.23 no.10
    • /
    • pp.599-605
    • /
    • 2013
  • CSA, a cement mineral compound that is mainly composed of $3CaO{\cdot}3Al_2O_3{\cdot}CaSO_4$, generates ettringite as a hydration product after a reaction with glass (lime), gypsum and water to speed up the hardening process and enhance the strength and degree of expansion. When used as a cement admixture, there is increased production of ettringite, which can improve the initial strength in the first three days and ameliorate the reduction in the initial strength caused by the use of fly ash in particular. In this study, a hydrate analysis was performed using XRD and SEM after substitution with fly ash (30%) and CSA (8%) with the goal of observing the effect of CSA on the initial strength of a cement mixture containing fly ash. The results of the analysis showed that an addition of CSA promoted the production of ettringite and improved the initial strength, resulting in the generation of hydrates, which can effectively enhance the long-term strength of these materials.

Sulfate Resistance of Alkali-Activated Materials Mortar (알칼리 활성화 결합재 활용 모르타르의 황산염 침식 저항성)

  • Park, Kwang-Min;Cho, Young-Keun;Lee, Bong-Chun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.2
    • /
    • pp.94-101
    • /
    • 2016
  • This paper presents an investigation into the durability alkali-activated materials(AAM) mortar and paste samples manufactured using fly-ash(FA) and ground granulated blast furnace slag(GGBFS) exposed to a sulfate environment with different GGBFS replace ratios(0, 30, 50 and 100%), sodium silicate modules($Ms[SiO_2/Na_2O]$ 1.0, 1.5 and 2.0) and initial curing temperatures($23^{\circ}C$ and $70^{\circ}C$). The tests involved immersions for a period of 6 months into 10% solutions of sodium sulfate and magnesium sulfate. The evolution of compressive strength, weight, length expansion and microstructural observation such as x-ray diffraction were studied. As a results, as higher GGBFS replace ratio or Ms shown higher compressive strengths on 28 days. In case of immersed in 10% sodium sulfate solution, the samples shows increase in long-term strength. However, for samples immersed in magnesium sulfate solutions, the general observation was that the compressive strength decreased after immersion. The most drastic reduction of compressive strength and expansion of weight and length occurred when GGBFS or Ms ratios were higher. Also, the XRD analysis of samples immersed in magnesium sulfate indicated that expansion of AAM caused by gypsum($CaSO_4{\cdot}2H_2O$); the gypsum increased up to 6 months continuously.