• Title/Summary/Keyword: 팽창압축비

Search Result 176, Processing Time 0.027 seconds

Effects of Expansive Admixture on the Mechanical Properties of Strain-Hardening Cement Composite (SHCC) (팽창재 치환율에 따른 섬유보강 시멘트 복합체의 역학적 특성)

  • Lee, Young-Oh;Yun, Hyun-Do
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.5
    • /
    • pp.617-624
    • /
    • 2010
  • This paper reports on a comprehensive study on the mechanical properties of expansive fiber-reinforced strainhardening cement composite (SHCC) materials containing various replacement levels (0, 8, 10, 12 and 14%) of an expansive admixture and 1.5% polyethylene (PE) fibers volume fraction. A number of experimental tests were conducted to investigate shrinkage, compressive strength, flexural strength, and direct tension behavior. Test results show that as expected, the different replacement levels of an expansive admixture have an important effect on the evolution of the free shrinkage of SHCC with a rich mixture. At the volume fraction of 1.5%, PE fibers in normal SHCC reduce free shrinkage deformation by about 30% in comparison to plain mortar. The replacement of an expansive admixture in SHCC material has led the SHCC to a better initial cracking behavior. Enhanced cracking tendency improved mechanical properties of SHCC materials with rich mixtures. Note that an increase in the replacement of expansive admixture from 10% to 14% does not lead to a significant improvement for mechanical properties; this implies that the replacement of 10% expansive admixture is sufficient.

The Effect of the Variation of Pressure Ratio on the Characteristics of Lateral Forces in an Over-Expanded Nozzle (압력비 변화과정이 과팽창 노즐에서 발생하는 횡력 변동 특성에 미치는 영향)

  • Lee, Jong-Sung;Kim, Heuy-Dong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.6
    • /
    • pp.38-44
    • /
    • 2010
  • The shock wave and boundary layer interaction patterns in an over-expanded rocket nozzle are associated with the production of undesirable side-forces during the start-up and shut-down processes of the engine. In the present work, a computational study is carried out to investigate the effect of the transient nozzle pressure ratio (NPR) on the flow fields inside the nozzle. The unsteady, compressible, axisymmetric, Navier-Stocks equations with SST k-${\omega}$ turbulence model are solved using a fully implicit finite volume scheme. NPR is varied from 2.0 to 10.0, in order to simulate the start-up and shut-down processes of the rocket engine. It is observed that the interaction patterns and the hysteresis phenomenon strongly depend on the time variation of NPR, leading to significantly different characteristics in the lateral forces.

Physical and Mechanical Properties of Synthetic Lightweight Aggregate Concrete (인공경량골재(人工輕量骨材) 콘크리트 물리(物理)·역학적(力學的) 특성(特性))

  • Kim, Seong Wan;Min, Jeong Ki;Sung, Chan Yong
    • Korean Journal of Agricultural Science
    • /
    • v.24 no.2
    • /
    • pp.182-193
    • /
    • 1997
  • The normal cement concrete is widely used material to build the construction recently, but it has a fault to increase the dead load on account of its unit weight is large compared with strength. Therefore, many engineers are continuously searching for new materials of construction to provide greater performance at lower density. The main purpose of the work described in this paper were to establish the physical and mechanical properties of synthetic lightweight aggregate concrete using perlite on fine aggregate and expanded clay, pumice stone on coarse aggregate. The test results of this study are summarized that the water-cement ratio was shown 47% using expanded clay, 56% using pumice stone on coarse aggregate, unit weight was shown $l,622kgf/m^3$ using expanded clay, $l,596kgf/m^3$ using pumice stone on coarse aggregate, and the absorption ratio was shown same as 17%. The compressive strength was shown more than $228kgf/cm^2$, tensile and bending strength was more than $27kgf/cm^2$, $58kgf/cm^2$ at all types, and rebound number with schmidt hammer was increased with increase of compressive strength. The static modulus was $1.12{\times}10^5kgf/cm^2$ using expanded clay, $1.09{\times}10^5kgf/cm^2$ using pumice stone on coarse aggregate, and stress-strain curves were shown that increased with increase of stress, and the strain on the maximum stress was shown identical with $2.0{\times}10^{-3}$, approximately.

  • PDF

Evaluation on Mechanical Properties of High Strength Light-Weight Concrete with Elevated Temperature and loading (하중조건과 고온에 의한 고강도 경량 콘크리트의 역학적 특성 평가)

  • Kim, Gyu-Yong;Kim, Young-Sun;Choe, Gyeong-Cheol;Park, Hyun-Gil;Lee, Tae-Gyu
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.6
    • /
    • pp.723-730
    • /
    • 2011
  • It is very important to experimentally evaluate concrete behavior at elevated temperature because aggregates make up approximately 80 percent of volume in concrete. In this study, an experiment to evaluate mechanical properties of normal weight and light weight concrete of 60 MPa was conducted. Based on loading level of 0, 20 and 40 percent, the tests of 28 days compressive strength, elastic modulus, thermal strain, total strain, and transient creep using ${\phi}100{\times}200mm$ cylindrical specimens at elevated temperature were performed. Then, the results were compared with CEB (Committes Euro-international du Beton) model code. The results showed that thermal strain of light weight concrete was smaller than normal weight concrete. Also, the results showed that compressive strength of light concrete at $700^{\circ}C$ was higher than normal weight concrete and CEB code, similar to that obtained at ambient temperature. Transient creep developed from loading at a critical temperature of $500^{\circ}C$ caused the concrete strains to change from expansion to compression. The transient creep test result showed that internal force was high when the ratio of shrinkage between concrete and aggregate was more influential than thermal expansion.

Numerical Simulation of Axisymmetric Supersonic let Impingement on a Flat Plate (수직평판에 충돌하는 축대칭 초음속 제트의 수치 연구)

  • 신완순;이택상;박종호;김윤곤;심우건
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.3
    • /
    • pp.11-18
    • /
    • 2000
  • When supersonic underexpanded jets are exhausted from the nozzle, complex shock cell configurations such as barrel shock, expansion fan, Mach disc, and exhaust-gas jet boundary are appeared repetitively. The shock cell is smeared by turbulence dissipation and disappeared in long distance from the nozzle. When underexpanded jet is suddenly impinged on a flat plate, it forms very complex flow structure. In this paper, we solve compressible Wavier-Stokes equation adapting finite volume method to obtain jet impingement flow structure and compare calculated data with experimental ones. It is shown that numerical simulation data are in good agreement with experimental one in a short distance between nozzle exit and flat plate and little influence of underexpanded ratio is appeared in jet impingement now distribution.

  • PDF

A Numerical Simulation on the Process of Diaphragm Opening in Shock Tube Flows (충격파관 유동의 파막과정에 관한 수치 시뮬레이션)

  • Shin, Choon-Sik;Jeong, June-Chang;Suryan, Abhilash;Kim, Heuy-Dong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.1
    • /
    • pp.27-33
    • /
    • 2009
  • Shock tube flow measurement has been often hampered a finite opening time of diaphragm, but there is no systematic work to investigate its effect on the shock tube flow. In the present study, both the experimental and computational works have been performed on the shock tube flows at low pressure ratios. The computational analysis has been performed using the two-dimensional, unsteady, compressible Navier-Stokes equations, based upon a TVD MUSCL finite difference scheme. It is known that the present computational results reproduce the experimental data with good accuracy and simulate successfully the process of diaphragm opening as a function of time. The concept of an imaginary center is introduced to quantify the non-centered expansion wave due to a finite opening time of diaphragm. The results obtained show that the diaphragm opening time is reduced as the initial pressure ratio of shock tube increases, leading to the effect of a finite opening time of diaphragm to be more remarkable at low pressure ratios.

특집:에너지플랜트 및 핵심기자재 기술 - 가스액화플랜트기술

  • Hong, Yong-Ju;Go, Jun-Seok;Kim, Hyo-Bong;Park, Seong-Je
    • 기계와재료
    • /
    • v.24 no.1
    • /
    • pp.26-35
    • /
    • 2012
  • 가스액화플랜트는 질소, 산소, 헬륨 등 고순도의 가스를 효율적으로 저장 및 운송을 위해 가스를 액체로 변환하는 플랜트로, 대표적인 플랜트로는 질소, 산소, 아르곤 등의 가스를 생산하는 공기분리플랜트, 헬륨액화플랜트, 수소액화플랜트, 천연가스액화플랜트 등이 있다. 질소, 산소, 수소 등의 가스는 산업의 전반적인 분야에서 널리 사용되고 있으며, 국내의 경우 철강, 반도체, 디스플레이제조산업 등 가스 다소비 분야의 비약적인 발전에 따라 급격하게 수요가 증가하고 있는 상황이다. 대용량의 가스액화플랜트는 원료로부터 불순물을 제거하고, 팽창 또는 열교환 과정을 통해 가스를 액체로 변환하는 극저온기술로 주로 구성되며, 이와 같은 과정은 압축기, 열교환기, 증류탑, 팽창터빈, 콜드박스 등의 구성요소에 의해 구현된다. 따라서 가스액화플랜트에서 효율적인 극저온의 생성 및 유지는 플랜트의 경제성 제고를 위해 핵심적인 요소이다.

  • PDF

An Indirect Experimental Method for the Determination of Mechanical Properties of Ion-nitrided Layer and Residual Stress Distribution (이온질화층의 기계적 성질과 잔류응력 분포를 위한 간접 실험법)

  • 곽병만;길영준
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.2
    • /
    • pp.240-249
    • /
    • 1985
  • 여러 가지 조건하에서 한쪽면만 이온질화 처리된 SCM4 의 평판을 모델로 하여 질화층의 기계적 성질과 잔류응력을 연구하였다. 질화층에서의 재료의 성질은 질소함량분포에 비례하여 변할 것이 라는 가정하에 외팔보의 굽힘과 온도-곡률의 관계를 구하는 이론적 모델을 정립하고 이에 따른 간접적 실험방법을 제시하였다. 질화층 표면에서의 선팽창 계수는 질화되지 않은 코어의 값에 비 해 2내지 12% 증가를 보였고 탄성계수는 50내지 700%증가를 보였다. 질화로 인한 축방향 팽창은 변형도로 약 0.002를 얻었다. 상온에서의 코어의 최대인장 잔류응력은 2내지 25Kg/mm$^{2}$이 며, 질화층표면에서 일어나는 최대압축잔류응력은 질화조건에 따라 50내지 300Kg/mm$^{2}$을 얻었다.

A Prediction of Thermal Expansion Coefficient for Compacted Bentonite Buffer Materials (압축 벤토나이트 완충재의 열팽창계수 추정)

  • Yoon, Seok;Kim, Geon-Young;Baik, Min-Hoon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.3
    • /
    • pp.339-346
    • /
    • 2018
  • A geological repository system consists of a disposal canister with packed spent fuel, buffer material, backfill material, and intact rock. The buffer is indispensable to assure the disposal safety of high-level radioactive waste. Since the heat generated from spent nuclear fuel in a disposal canister is released to the surrounding buffer materials, the thermal properties of the buffer material are very important in determining the entire disposal safety. Especially, since thermal expansion can cause thermal stress to the intact rock mass in the near-field, it is very important to evaluate thermal expansion characteristics of bentonite buffer materials. Therefore, this paper presents a thermal expansion coefficient prediction model of the Gyeongju bentonite buffer materials which is a Ca-bentonite produced in South Korea. The linear thermal expansion coefficient was measured considering heating rate, dry density and temperature variation using dilatometer equipment. Thermal expansion coefficient values of the Gyeongju bentonite buffer materials were $4.0{\sim}6.0{\times}10^{-6}/^{\circ}C$. Based on the experimental results, a non-linear regression model to predict the thermal expansion coefficient was suggested and fitted according to the dry density.

인공심장의 연구개발 현황

  • 한동철;천길정
    • Journal of the KSME
    • /
    • v.27 no.2
    • /
    • pp.99-108
    • /
    • 1987
  • 국내에서 개발중인 인공심장으로는 서울대학교 공과대학 기계설계학과와 서울대학교병원 의공학과에서 공동으로 개발중인 전기-기계식 인공심장이 있다. 모우터가 내장된 실린더가 모우터의 정.역전에 따라 통 안에서 좌.우로 움직이면서 좌.우심실을 교대로 압축한다. 모우터가 들어 있는 실린더의 위치가 통 안에서 고정되어 있지 않고 움직이므로, 한쪽 심실이 팽창할 때 실린더가 다른 한쪽 심실 공간을 차지하여 결국 전체 체적은 하나의 심실 공간과 모우터 공간만 있으면 되므로 모우터의 위치가 고정된 형식에 비해 체적 감소가 가능하다. 에너지 변환기를 구성하는 기계요소로는 2단의 유성기어열과 랙(rack)뿐으로서 비교적 구조가 간단하여 고장의 가능성이 낮다. 따라서 기존 모델들이 지니고 있는 단점들이 거의 극복 되었다. 현재 모의 순환실험에 성공하고 동물 실험을 준비 하고 있다.

  • PDF