• Title/Summary/Keyword: 팽창성 광물

Search Result 59, Processing Time 0.026 seconds

Variation of the Physical-microstructural Properties of Sandstone and Shale Caused by CO2 Reaction in High Pressure Condition (고압 이산화탄소 반응에 의한 사암과 셰일의 물리적-미세구조적 변화)

  • Park, Jihwan;Son, Jin;Park, Hyeong-Dong
    • Tunnel and Underground Space
    • /
    • v.26 no.4
    • /
    • pp.293-303
    • /
    • 2016
  • Underground $CO_2$ storage technology is one of the most effective methods to reduce atmospheric $CO_2$. In this study, $CO_2$ storage condition was simulated in the laboratory. Sandstone and shale specimens were saturated in 1M NaCl and were reacted at $45^{\circ}C$, 10 atm for 4 weeks. The physical and microstructural properties of rock specimens were measured. Variations on physical properties of shale specimens were bigger than those of sandstone specimens, such as volume, density, elastic wave velocity, Poisson's ratio and Young's modulus. Microstructure were analyzed using X-ray computed tomography. Total number of pores were decreased, and average volume, average area and average equivalent diameter of each pore were changed after $CO_2$ reaction. Swelling and leakage of clay mineral caused by $CO_2$-mineral reaction were the reason of changes. The results of this study can be applied to predict the physical and microstructural changes in underground $CO_2$ storage condition.

Freeze-Thaw Resistance of Alkali Activated Ternary Blended Cement Incorporated with Ferronickel Slag (알칼리 활성화제를 첨가한 페로니켈슬래그 혼입 삼성분계 콘크리트의 동결융해 저항성)

  • Cho, Won-Jung;Park, Kwang-Pil;Ann, Ki-Yong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.2
    • /
    • pp.159-167
    • /
    • 2022
  • The present study assessed the micro structure and durability characteristics of ternary blended cement with different types of alkali activators. Ground granulated blast furnace slag(GGBS) and ferronickel slag(FNS) was replaced until 50 % of the weight of cement. In addition, potassuim hydroxide and sodium hydroxide were used for comparing the properties of different type of alkali activator. Ternary blended cement with alkali activators showed higher peak portlandite peak than that of OPC(Ordinary Portlande Cement) and non activated ternary blended cement. Also, there was no new hydration products in ternary blended cement or/and alkali activators. Based on the mercury intrustion porosimetry(MIP) test result, ternary blended cement increased macro pore while alkali activated ternary blended cement modified pore structure and increased microp pore as compared to OPC as control. Combination with alkali activators is desirable to enhance the compressive strength and freeze thaw resistance.

Review of Thermodynamic Sorption Model for Radionuclides on Bentonite Clay (벤토나이트와 방사성 핵종의 열역학적 수착 모델 연구)

  • Jeonghwan Hwang;Jung-Woo Kim;Weon Shik Han;Won Woo Yoon;Jiyong Lee;Seonggyu Choi
    • Economic and Environmental Geology
    • /
    • v.56 no.5
    • /
    • pp.515-532
    • /
    • 2023
  • Bentonite, predominantly consists of expandable clay minerals, is considered to be the suitable buffering material in high-level radioactive waste disposal repository due to its large swelling property and low permeability. Additionally, the bentonite has large cation exchange capacity and specific surface area, and thus, it effectively retards the transport of leaked radionuclides to surrounding environments. This study aims to review the thermodynamic sorption models for four radionuclides (U, Am, Se, and Eu) and eight bentonites. Then, the thermodynamic sorption models and optimized sorption parameters were precisely analyzed by considering the experimental conditions in previous study. Here, the optimized sorption parameters showed that thermodynamic sorption models were related to experimental conditions such as types and concentrations of radionuclides, ionic strength, major competing cation, temperature, solid-to-liquid ratio, carbonate species, and mineralogical properties of bentonite. These results implied that the thermodynamic sorption models suggested by the optimization at specific experimental conditions had large uncertainty for application to various environmental conditions.

A Study for Crystal Growth Inhibition of Ettringite by Solution Synthesis Experiment (용액합성실험에 의한 에트린자이트 결정성장억제 연구)

  • Lee, Hyo-Min;Hwang, Jin-Yeon;Oh, Ji-Ho
    • Journal of the Mineralogical Society of Korea
    • /
    • v.23 no.1
    • /
    • pp.51-61
    • /
    • 2010
  • Ettringite $(Ca_6[Al(OH)_6]_2(SO_4)_3{\cdot}26H_2O)$ is a sulfate mineral that shows a complicate property in concrete. It is often called as "a cancer of concrete" because secondary ettringite formation in hardened concrete often cause expansion and cracking of concrete due to its expansive crystal structure. In the present study, we tested the possibility for crystal growth inhibition of secondary ettringite by crystallization inhibitors that are commercially used for scaling inhibitors in Korea. For the test, we developed a method of ettringite solution synthesis. Three types of crystallization inhibitors were selected and examined the effects On ettringite growth inhibition. The experimental results of ettringite solution synthesis indicated that ettringite was successfully synthesized under condition that the mass balance between calcium hydroxide saturated solution and aluminum sulfate solution was attained. Monosulfate and semisulfate were synthesized when the ratio of $Ca^{2+}$ ions to ${SO_4}^{2+}$ ions was increased. The induction time of ettringite crystallization was less than 2 min. and crystallization was almost completed within an hour. The experimental results of ettringite crystallization inhibition showed that organic PBCT (2-Phosphonobutane-1,2,4-Tricarboxylic Acid) and inorganic SHMP (Sodium Hexametaphosphate) were relatively less effective on ettringite crystallization inhibition under experimental conditions. However, organic HEDP (1-Hydoxyethylidene-1,1-Diphosphonic Acid) effectively prevented ettringite growth with producing amorphous gel phase materials up to inhibitor concentration 0.1 vol.% of aluminum sulfate solution.

Evaluation of Chloride and Chemical Resistance of High Performance Mortar Mixed with Mineral Admixture (광물성 혼화재료를 혼입한 고성능 모르타르의 염해 및 화학저항성 평가)

  • Lee, Kyeo-Re;Han, Seung-Yeon;Choi, Sung-Yong;Yun, Kyong-Ku
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.618-625
    • /
    • 2018
  • With the passing of time, exposed concrete structures are affected by a range of environmental, chemical, and physical factors. These factors seep into the concrete and have a deleterious influence compared to the initial performance. The importance of identifying and preventing further performance degradation due to the occurrence of deterioration has been greatly emphasized. In recent years, evaluations of the target life have attracted increasing interest. During the freezing-melting effect, a part of the concrete undergoes swelling and shrinking repeatedly. At these times, chloride ions present in seawater penetrate into the concrete, and accelerate the deterioration due to the corrosion of reinforced bars in the concrete structures. For that reason, concrete structures located onshore with a freezing-melting effect are more prone to this type of deterioration than inland structures. The aim of this study was to develop a high performance mortar mixed with a mineral admixture for the durability properties of concrete structures near sea water. In addition, experimental studies were carried out on the strength and durability of mortar. The mixing ratio of the silica fume and meta kaolin was 3, 7 and 10 %, respectively. Furthermore, the ultra-fine fly ash was mixed at 5, 10, 15, and 20%. The mortar specimens prepared by mixing the admixtures were subjected to a static strength test on the 1st and 28th days of age and degradation acceleration tests, such as the chloride ion penetration resistance test, sulfuric acid resistance test, and salt resistant test, were carried out at 28 days of age. The chloride diffusion coefficient was calculated from a series of rapid chloride penetration tests, and used to estimate the life time against corrosion due to chloride ion penetration according to the KCI, ACI, and FIB codes. The life time of mortar with 10% meta kaolin was the longest with a service life of approximately 470 years according to the KCI code.

Physical and Mechanical Properties of Magnesium Oxide Matrix depending on Addition Ratio of Magnesium Chloride (염화마그네슘 첨가율에 따른 산화마그네슘 경화체의 물리 및 역학적 특성)

  • Kim, Heon-Tae;Jung, Byeong-Yeol;Lee, Sang-Soo;Song, Ha-Young
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.4
    • /
    • pp.308-313
    • /
    • 2014
  • Recently, for longevity of resident building, the main trend is that the change of the inside space organization of resident building from wall construction to rhamen construction, which resulted in increase in use of lightweight composite panel. Thus, in this study, authors analyzed the engineering property of oxide of magnesium depending on the magnesium chloride addition ratio. The results of this research is expected to contribute on providing a fundamental material for the surface materials of lightweight composite panel. As the result of the experiment, as fluidity increased, air content decreased and initial set and final set as the magnesium chloride addition ratio increase. In the aspect of flexural strength and compressive strength, the test specimen showed the highest strength at 40% of the magnesium chloride addition ratio. At 20% of the magnesium chloride addition ratio, the test specimen showed the lowest water absorption rate. As the magnesium chloride addition ratio increases, the expansibility tends to increase as well in the aspect of shrinkage strain. After observing microstructure, we can see hydration products in the form of needle. It appeared high flexural strength because the hydration products have mineral fibrous tissue shape, which also contribute to the cause of the expansibility.

Measurement of Mode I Fracture Toughness of Rocks with Temperature and Moisture Conditions at Low Temperature (저온하에서의 온도 및 함수 조건에 따른 암석의 모드 I 파괴인성 측정)

  • Jung, Yong-Bok;Park, Chan;Synn, Joong-Ho;Lee, Hi-Keun
    • Tunnel and Underground Space
    • /
    • v.11 no.4
    • /
    • pp.352-361
    • /
    • 2001
  • Mode I fracture toughness ( $K_{IC}$) of the frozen rocks and that of the frozen-thawed rocks were obtained by using BDT and CCNBD specimens. The test temperatures ranged from +$25^{\circ}C$ to -16$0^{\circ}C$. Wet and air-dry specimens of granite and sandstone were used in order to investigate the effect of water and porosity on fracture toughness. The SEM images of the frozen-thawed rocks were also analysed to check the density of thermal cracks. The $K_{IC}$ of the frozen rocks increased as the test temperature went down. The rate of increase was higher in wet condition than in dry condition and the rate of increase for wet granite was higher than that for wet sandstone. The $K_{IC}$ of the frozen-thawed rocks varied within 15% from the $K_{IC}$ of the rocks at room temperature. After one freeze-thaw process, thermal crack occurred in granite but no thermal cracks occurred in sandstone. And the crack density was increased as the temperature went down.n.

  • PDF

Prediction Model on Autogenous Shrinkage of High Performance Concrete (고성능 콘크리트의 자기수축 예측모델에 관한 연구)

  • Yoo, Sung-Won;Soh, Yang-Sub;Cho, Min-Jung;Koh, Kyung-Taek;Jung, Sang-Hwa
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.3
    • /
    • pp.97-105
    • /
    • 2006
  • The autogenous shrinkage of high-performance concrete is important in that it can lead the early cracks in concrete structures. The purpose of the present study is to explore the autogenous shrinkage of high-performance concrete with admixture and to derive a realistic equation to estimate the autogenous shrinkage model of that. For this purpose, comprehensive experimental program has been set up to observe the autogenous shrinkage for various test series. Major test variables were the type and contents of admixture and water-cement ratio is fixed with 30%. The autogenous shrinkage of HPC with fly ash slightly decreased than that of OPC concrete, but the use of blast furnace slag increased the autogenous shrinkage. Also, the autogenous shrinkage of HPC is found to decrease with increasing shrinkage reduction agent and expansive additive. A prediction equation to estimate the autogenous shrinkage of HPC with admixture was derived and proposed in this study. The proposed equation show reasonably good correlation with test data on autogenous shrinkage of HPC with mineral and chemical admixture.

A Study on the Charateristics of Antiwashout Underwater Concrete with Mineral Admixture (광물질 혼화재료를 첨가한 수중불분리성 콘크리트의 특성에 관한 연구)

  • Baek Dong-Il;Kim Myung-Sik;Jang Hee-Suk
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.6 s.84
    • /
    • pp.777-783
    • /
    • 2004
  • In this study, for improving of concrete properties, those are used ground granulated blast slag(GGBS) and fly ash(FA). There are some advantage to add the GGBS and FA in plain concrete. The objective of this study is to find the characteristics of fresh and hardened antiwashout underwater concrete which is followed by blended ratio of GGBS and FA. Experimental parameters were chosen that W/C was 50%, S/a was 40% and as the blended ratio of GGBS was set at 0, 10, 20, 30, 40, 50, 60% and FA was set at 0, 10, 15, 20, 25, 30, 35% in order to prove the properties of antiwashout underwater concrete can be changed by blended ratio of GGBS md FA. It was measured pH, suspension and slump flow of fresh antiwashout underwater concrete and compressive strength of hardened antiwashout underwater concrete in age of 7 days, 28 days and 56 days. The experimental results of fresh concrete show that pH, suspension and slump flow were all satisfied with KSCE (Korea Society of Civil Engineering) standard value and mix design standard value. To synthetically consider, the optimum blended ratio is about 30% of GGBS and FA.

Sulfate Resistance of Alkali-Activated Materials Mortar (알칼리 활성화 결합재 활용 모르타르의 황산염 침식 저항성)

  • Park, Kwang-Min;Cho, Young-Keun;Lee, Bong-Chun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.2
    • /
    • pp.94-101
    • /
    • 2016
  • This paper presents an investigation into the durability alkali-activated materials(AAM) mortar and paste samples manufactured using fly-ash(FA) and ground granulated blast furnace slag(GGBFS) exposed to a sulfate environment with different GGBFS replace ratios(0, 30, 50 and 100%), sodium silicate modules($Ms[SiO_2/Na_2O]$ 1.0, 1.5 and 2.0) and initial curing temperatures($23^{\circ}C$ and $70^{\circ}C$). The tests involved immersions for a period of 6 months into 10% solutions of sodium sulfate and magnesium sulfate. The evolution of compressive strength, weight, length expansion and microstructural observation such as x-ray diffraction were studied. As a results, as higher GGBFS replace ratio or Ms shown higher compressive strengths on 28 days. In case of immersed in 10% sodium sulfate solution, the samples shows increase in long-term strength. However, for samples immersed in magnesium sulfate solutions, the general observation was that the compressive strength decreased after immersion. The most drastic reduction of compressive strength and expansion of weight and length occurred when GGBFS or Ms ratios were higher. Also, the XRD analysis of samples immersed in magnesium sulfate indicated that expansion of AAM caused by gypsum($CaSO_4{\cdot}2H_2O$); the gypsum increased up to 6 months continuously.