• Title/Summary/Keyword: 팽윤

Search Result 697, Processing Time 0.022 seconds

Effects of Convection Oven Dehydration Conditions on the Physicochemical and Sensory Properties of Ginkgo Nut Powder (열풍건조 조건에 따른 은행분말의 이화학적 및 관능적 특성)

  • Kim, Jung-Mi;Lee, Young-Chun;Kim, Kwang-Ok
    • Korean Journal of Food Science and Technology
    • /
    • v.35 no.3
    • /
    • pp.393-398
    • /
    • 2003
  • Effects of convection oven dehydration conditions on the physicochemical and sensory properties of ginkgo nut powder were examined using three types of pre-treatment on ginkgo nuts: coarse grinding of ginkgo nut (GR); coarse grinding followed by 1 min blanching (GB); 3 min blanching followed by coarse grinding (BG). Pretreated ginkgo nuts were dried in convection oven at 70 and $80^{\circ}C$ to the moisture content of approximately 5%. Rehydration rate, swelling power, solubility, lightness, and greenness of GB ginkgo nut powder dried at $70^{\circ}C$ were the most similar to those of freeze dried one. GR and GB samples dried at $70^{\circ}C$ had higher sensory values of green color and ginkgo nut flavor. Ginkgo nut powder with desirable quality attributes could be produced by drying GB in convection oven at $70^{\circ}C$ for 10 hr.

Some Physicochemical Properties of Potato Yam(D. bulbifera) Starches (Potato Yam(Dioscorea bulbifera) 전분의 이화학적 특성)

  • Seog, Ho-Moon;Park, Yong-Kon;Nam, Young-Jung
    • Korean Journal of Food Science and Technology
    • /
    • v.22 no.7
    • /
    • pp.753-761
    • /
    • 1990
  • The physicochemical properties of starches from aerial and subterranean tuber of yam were compared with those of rice and sweet potato. Aerial tuber yam contained higher level of amylose than others, whereas water binding capacity, swelling power and solubility was highest in subterranean tuber yam starch. Brabender amylograms of 5% starch suspensions indicated that the initial pasting temperature of yam starches were slightly higher than that of rice and sweet potato starches, the maximum viscosities of starches from subterranean and aerial tuber yam were 860 and 590 B.U., respectively. Yam starches were more difficult to hydrolyze by ${\alpha}-amylase$ than rice and sweet potato starches. ${\beta}-Amylolysis\;limit$ for yam starches and their amylose and amylopectin were higher than rice and sweet potato starches. The elution profiles of starches on Sepharose CL-2B were different from each other but they were similar between yam starches. Incomplete debranched fractions in the aerial tuber yam amylopectin was particularly higher than other samples. The weight ratio of short chains to long chains for debranched amylopectins was the lowest in aerial tuber yam.

  • PDF

Surface Modification of Microcrystalline Cellulose (MCC) Filler for CO2 Capture (CO2 흡착 충전제 제조를 위한 microcrystalline cellulose (MCC) 입자 표면개질연구)

  • Yang, Yeokyung;Park, Seonghwan;Kim, Hanna;Hwang, Ki-Seob;Ha, KiRyong
    • Korean Chemical Engineering Research
    • /
    • v.55 no.1
    • /
    • pp.60-67
    • /
    • 2017
  • In this study, we performed surface modification of biodegradable microcrystalline cellulose (MCC) to use as a filler in polyethylene (PE) composite in food packaging application. We modified MCC surface with (3-trimethoxysilylpropyl)diethylenetriamine (TPDT) silane coupling agent, which has one primary amino group and two secondary amino groups per molecule, to introduce amino groups with a carbon dioxide adsorption capability in MCC. Effects of each of the reaction conditions such as amount of TPDT introduced, swelling time, reaction temperature, and reaction time on surface modification degree of MCC were investigated by changing a variety of above reaction conditions. The amount of TPDT grafted on MCC surface and formation of chemical bonds were confirmed by Fourier transform infrared spectroscopy (FT-IR), elemental analysis (EA), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA) and solid state $^{29}Si$ nuclear magnetic resonance (NMR) spectroscopy. We confirmed increase of grafted amount of TPDT on MCC with increasing reaction time, reaction temperature, and amount of introduced TPDT.

Radiation-Crosslinked Carboxymethyl Cellulose/Porcine Cartilage Acellular Matrix Hydrogel Films to Prevent Peritoneal Adhesions with physical properties and anti-adhesivity (방사선 가교된 유착방지용 Carboxymethyl Cellulose/Porcine Cartilage Acellular Matrix 수화젤 필름의 물리적 특성 및 부착 방지 평가)

  • Jeong, Sung In;Park, Jong-Seok;Gwon, Hui-Jeong;An, Sung-Jun;Song, Bo Ram;Kim, Young Jick;Min, Byoung Hyun;Kim, Moon Suk;Lim, Youn-Mook
    • Korean Chemical Engineering Research
    • /
    • v.55 no.1
    • /
    • pp.34-39
    • /
    • 2017
  • In this study, intermolecular crosslinked carboxymethyl cellulose sodium salt (CMC) and porcine Cartilage Acellular Matrix (PCAM) blended hydrogel films for anti-adhesive barriers were prepared by gamma-ray radiation. The effects of the CMC/PCAM concentration and blending ratio on the morphology, gel fraction, gel strength, and degree of swelling were determined. The results indicated that crosslinked CMC/PCAM films show significantly lower the gel-fraction than CMC films. The degree of attachment and proliferation of human vascular endothelial cells on CMC/PCAM films was lower than the CMC films. We show the capacity of the CMC and PCAM to be hydrogel films, and the ability to reduce cell adhesion and proliferation on these films by modification with cell anti-adhesion molecules of PCAM. In conclusion, this study suggests that radiation cross-linked CMC/PCAM hydrogel films endowed with anti-adhesion ligands may allow for improved regulation of cell anti-adhesion behavior for prevent peritoneal adhesions.

Preparation of Trinitrophenyl Cellulose as Substrate for Cellulase Assay (Trinitrophenyl Cellulose의 조제)

  • Maeng, Jeong-Seob;Nam, Yoon-Kyu;Park, Seung-Heui;Choi, Woo-Young
    • Korean Journal of Agricultural Science
    • /
    • v.22 no.2
    • /
    • pp.151-155
    • /
    • 1995
  • Two types of modified celluloses which contain trinitrophenyl groups as chromophore were synthesized from carboxymethyl cellulose Whatman CM 70 and CM 32. Diaminoethyl groups were added to the CM 70 and CM 32 to make DAE-CM celluloses and then the DAE-CM groups were substituted by 2,4,6-trinitrophenyl groups to produce TNP-celluloses. Average particle size of the TNP-cellulose from CM 32 was $44.6{\pm}9.6{\mu}m$ in diameter and $127.9{\pm}22.5{\mu}m$ in length, which was much smaller than those from CM 70, however its TNP-moiety per gram determined by using the molar extinction coefficient $1.33{\times}10^4$ of ${\varepsilon}$-TNP-lysine at 345 nm, was 0.68 millimoles, which was 5.6-fold greater than those from CM 70. The absorption spectrum of TNP-oligosaccharides which were the soluble products of TNP-celluloses by a cellulase preparation Onozuka R-10, showed a maximal peak at 344 nm. Increases in the absorbance during hydrolysis were linear with the enzyme concentration, and the differences of slope values between two types of TNP-celluloses that the more semsitive assay could be achieved by using those from CM 32 as substrate at the low range of the enzyme concentration.

  • PDF

Synthesis of Aminated Poly(ether imide) for the Preparation of Bi-polar Membranes and Their Application to Hypochlorite Production through the Surface Direct Fluorination (바이폴라막 제조를 위한 폴리에테르이미드의 아민화 합성 및 표면불소화를 통한 차아염소산 생성)

  • Kim, Cheong Seek;Kang, SuYeon;Rhim, Ji Won;Park, Soo-Gil
    • Polymer(Korea)
    • /
    • v.39 no.2
    • /
    • pp.338-345
    • /
    • 2015
  • Poly(phenylene oxide) (PPO) and polyether imide (PEI) were sulfonated and aminated to create sulfonated poly(phenylene oxide) (SPPO) and aminated polyether imide (APEI), respectively. Characterization of the SPPO and APEI were performed via measurements of FTIR, thermogravimetry (TGA), swelling degree, ion exchange capacity (IEC), and ion conductivity. Next, the surfaces of these membranes were modified by surface fluorination at room temperature. The surface fluorinated SPPO and APEI membranes underwent characterization again for the mentioned measurements to determine any differences. The 3 types of bi-polar membranes were prepared by varying the IEC of the APEI at a fixed SPPO IEC value, which were applied to the low and high NaCl concentration of feed solution at the different current density, respectively. The hypochlorite concentration derived from the surface fluorinated membranes was dependent on the IEC of the APEI and ranged from 491 to 692 ppm at $80mA/m^2$. At low current density of $5mA/m^2$, the hypochlorite concentrations ranged from 18 to 28 ppm for the 4 hrs surface fluorinated membranes and their durability increased greatly.

Thin Hardboard Manufacture from Waste Lignocellulosic Papers as Overlay Substitutes in Low Grade Plywood and Particle Board Panels(I) (고지로부터 저급합판 및 파아티클보오드 표면단판으로 사용될 수 있는 박판 하아드보오드의 제조(I))

  • Lee, Byung-Guen;Lee, Sang-Yeob
    • Journal of the Korean Wood Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.19-25
    • /
    • 1994
  • The purpose of this study was to determine the technical feasibility of making 3-dimensional thin hardboard panels for overlay substitutes of low grade particleboard and plywood panels. Experimental studies were directed at assembling bench-top apparatus, learning the characteristics of different types of lignocellulosic waste papers, for making thin hardboard with several combinations of them with and without resin addition. The raw materials used are waste corrugated cartons, cereal boxes, and old magazines which contain substantial amount of lignin in it. The experimental results showed that satisfactory thin(0.21~0.16cm) hardboard could be made from the residential mixed waste papers that have selected properties comparable to commercial 0.32cm hardboard. The significant mixing ratio effect of the waste papers was present on the thickness swelling, water absorption, linear expansion, and modulus of elasticity including Taber abrasion tests of the thin hardboard made. The mixing ratio of waste papers and resin in the thin hardboard prominently affected the specific gravity of it, which led to affect modulus of elasticity and those physical properties sensitively. And it was shown that the hardboard containing those physical properties can be used for overlay substitutes of low grade plywood and particleboard panels.

  • PDF

Impact of Milling Method on Quality Parameters of Waxy Sorghum Flour (제분방법에 따른 찰수수 가루의 품질 특성)

  • Ryu, Bog-Mi;Kim, Chang-Soon
    • Korean journal of food and cookery science
    • /
    • v.29 no.2
    • /
    • pp.129-135
    • /
    • 2013
  • The objective of this research was to investigate physicochemical properties of waxy sorghum flours by different milling methods (pin mill and ultra fine mill). Four different sorghum flours were used for the experiments ; PWS (pin milled whole sorghum flour), PS (pin milled sorghum flour without bran), UFWS (ultra fine milled whole sorghum flour), UFS (ultra fine milled sorghum flour without bran). The contents of crude ash and total dietary fiber were the highest in PWS. Amylose content of pin milled sorghum flour was higher than that of ultra fine milled flour. The mean particle size of pin milled flours was six times lager than ultra fine milled flours. The L values of UFS and UFWS were higher than those of PS and PWS, whereas a and b values were higher in PWS. The water binding capacity was highest in UFWS, and solubility was higher in PS and UFS. Swelling power of flours was highest in UFS. The damaged starch content was higher in PS and UFS, which means damaged starch of sorghum flours significantly affected by polishing than milling method. The pasting properties were higher in the pin milled flours. Initial pasting temperature of pin milled flour was ranging from 70.5 to $73.1^{\circ}C$, which are higher than ultra fine milled flour ($68.6^{\circ}C$). The contents of total polyphenol were higher in PWS and UFWS than those of PS and UFS, there was no difference between the two milling methods. The results of this study indicate that physicochemical properties of sorghum flour were affected by milling methods as well as bran.

Changes in Physicochemical Properties of Rice Starch from Rice Stored at Different Conditions (저장조건에 따른 쌀전분의 이화학적 성질 변화)

  • Ko, Yong-Duck;Choi, Ok-Ja;Park, Seok-Kyu;Ha, Hee-Suk;Sung, Nack-Kie
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.306-312
    • /
    • 1995
  • In order to know properties in rice starch during storage of rice, rice starch from stored rice(stored at $5^{\circ}C$, R.H. 65% and $30^{\circ}C$, R.H. 85%, for 16 weeks) used in this experiment. Water binding capacity of rice starch increased for 8 weeks, and then it decreased. As the storage period took longer, swelling power and solubility, optical transmittance, blue value, total amylose content and soluble amylose content decreased. For the same periods, changes in rice starch from stored rice$(30^{\circ}C$, R.H. 85%) were made more than those in rice starch at $5^{\circ}C$, R.H. 65%. The granule shape of rice starch, irrespective of storage periods and conditions, didn't make a significant difference. The relative crystallinity of the rice starch by X-ray diffraction didn't distinctly changed till the second week. But, at the fourth week, that by X-ray diffraction significantly decreased, and then slightly decreased. As the storage period took longer, gelatinization temperature, melting temperature and melting enthalpy measured by DSC got higher, but gelatinization enthalpy got lower. For the same storage period, gelatinization temperature, melting temperature, gelatinization enthalpy and melting enthalpy of rice starch stored at $30^{\circ}C$, R.H. 85% made changes more than those of rice starch stored at $5^{\circ}C$, R.H. 65% did.

  • PDF

Physicochemical Properties of Rice Affected by Steeping Conditions (수침이 멥쌀의 이화학적 성질에 미치는 영향)

  • Kim, Sung-Kon;Bang, Jung-Bum
    • Korean Journal of Food Science and Technology
    • /
    • v.28 no.6
    • /
    • pp.1026-1032
    • /
    • 1996
  • The effects of steeping temperature $(7^{\circ},\;15^{\circ},\;20^{\circ}\;and\;30^{\circ}C)$ and steeping time $(2{\sim}14\;hr)$ on the physicochemical properties of milled rice (variety; Chucheongbyeo) were investigated. The pH of the steep water decreased as the steeping time increased, which was more pronounced at higher steeping temperature. The solid loss was about 4.0% during steeping. The contents of protein, fat and ash decreased during steeping, which was greater at elevated temperature. The lightness of rice was slightly increased, and the yellowness was decreased upon steeping. The water-binding capacity of rice was increased during steeping at above $15^{\circ}C$. The slight increase of the swelling power of rice at $80^{\circ}C$ was observed upon steeping. The maximum wavelengh for the rice flour-iodine complex was moved to a higher wavelengh, but X-ray diffraction patterns remained constant regardless the steeping conditions. The pasting properties of rice flour (10%) by amylograph indicated that the peak viscosity increased as the steeping time was increased at all steeping temperatures. The steeping resulted in the greater breakdown and the 1ower setback. The log peak viscosity showed a linear relationship with the steeping time. The activation energy and $Q_{10}$ value for the visciosity increase rate was 2, 320 cal/mole and 1.14, respectively.

  • PDF