• Title/Summary/Keyword: 팬 공급 유량

Search Result 13, Processing Time 0.031 seconds

Study on Performance Improvement Air Cooled Condenser Considering Ambient Condition (대기 조건에 따른 공랭식 응축기 성능 저하 개선 연구)

  • Cha, Hun;Ryu, Gwang-Nyeon;Kim, Jung-Rae
    • Transactions of the KSME C: Technology and Education
    • /
    • v.3 no.3
    • /
    • pp.201-207
    • /
    • 2015
  • Air cooled condenser for power plant is used at inland area of desert or mountainous area because condenser coolant like sea water is not necessary. However, the performance of air cooled condenser is influenced by ambient condition such as wind speed and air temperature. Therefore, various devices have been designed to improve the performance of air cooled condenser. In this study, the CFD analysis for air cooled condenser was carried out according to wind speed and wind screen configuration. As wind speed increased from 3m/s to 7m/s, the fan flow rate was reduced about 15.76% and the rise of inlet air temperature was 5.55 degree of Celsius. When the suitable wind screen is equipped, the fan flow rate went up about 5.18% and inlet air temperature dropped by 2.08 degree of Celsius in comparison with original case without wind screen at 7m/s wind speed.

Experimental Study on Heat Transfer and Pressure Drop of Heat Exchangers for Cooling Fan Coil Unit (냉방용 팬코일 유닛 열교환기의 열전달 및 압력강하 특성 실험연구)

  • Kwon, Young-Chul;Ko, Kuk-Won;Kwon, Jeong-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.3
    • /
    • pp.599-604
    • /
    • 2008
  • An experimental study has been performed to investigate the air-side capacity and pressure drop of the fin-tube heat exchanger for a fan coil unit under a cooling condition. The experimental data of five kinds of slit fin-tube heat exchangers were measured using an air-enthalpy calorimeter and a constant temperature water bath. Cooling capacities at the air and water rating flow rates were larger at the lower inlet water temperature. With increasing the water flow rate, the cooling capacity increased at the constant rate. Under the lower inlet water temperature, since the condensate was generated more on the fin-tube surface, the air-side pressure drop of the heat exchanger was larger.

CFD Based Shape Design of Guide Vane for Fan Filter Unit (전산유체해석을 이용한 Fan Filter Unit(FFU)의 가이드 베인 형상설계)

  • Jang, Jun Hwan;Ahn, Joon;Myong, Hyon Kook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.7
    • /
    • pp.709-716
    • /
    • 2013
  • A fan filter unit (FFU) is a device which supplies clean air from the ceiling in a clean room. With an increase in its size, velocity variation occurs within the exhaust plane and this damage the product quality or productivity. Hence, a guide vane is installed inside the device to enhance the velocity uniformity. Because the vane reduces the flow rate for a given pumping power, an optimum design is required to achieve velocity uniformity while minimizing the flow rate reduction at the same time. To find a geometry that satisfies these requirements, a series of numerical simulations has been conducted while changing the angle and length of the guide vanes. By changing the geometry of the side guide vane, the velocity uniformity increased by 3.7% and the flow rate decreased by 1.5%. For the center guide vane, the velocity uniformity increased by 2.9% and the flow rate decreased by 0.7%.

A Study on the BOS control of a small PEM fuel cell stack (소형 PEM 연료전지 스택의 BOS 제어에 관한 연구)

  • Kim, Tae-Hoon;Choi, Woo-Jin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.274-277
    • /
    • 2009
  • 본 논문에서는 소형 PEM(Proton Exchange Membrane) 연료전지 스택의 BOS(Balance of Stack) 제어에 관하여 논의한다. 별도의 가습 장치가 필요치 않고 BOS의 구성이 비교적 간단한 소형 PEM 연료전지 시스템에서는 팬과 퍼지밸브만의 제어를 통해 스택 내부 수분의 조절과 열 관리가 수행된다. 따라서 본 논문에서는 부하에 따른 최적의 공기유량을 계산하고 요구되는 유량의 공급을 위해 팬을 제어하는 알고리즘을 통해 소형 연료전지 시스템의 과도응답 특성과 안정성을 향상시키는 방법에 관하여 제안한다. 150W급 소형 연료전지 시스템을 꾸미고, 마이크로컨트롤러를 이용한 제어회로를 구현하여 실험함으로써 제안된 알고리즘의 유용함을 검증하였다.

  • PDF

Ethanol Pool Fire Extinguishing Experiment Using Twin-fluid Nozzle Supplied with Water and Air (물과 공기가 공급되는 2유체노즐을 활용한 에탄올 풀화재 소화 실험)

  • Jeong, Chan Seok;Lee, Chi Young
    • Fire Science and Engineering
    • /
    • v.33 no.3
    • /
    • pp.37-43
    • /
    • 2019
  • In this study, ethanol pool fire extinguishing experiments were conducted using a twin-fluid nozzle. Ethanol pool fires, 5.027×10-3 ㎡ and 1.131×10-2 ㎡ in size (80 mm and 120 mm in fuel pan diameter, respectively), were tested, and the flow rates supplied to the twin-fluid nozzle for fire extinguishing were 156-483 g/min and 20-70 L/min for water and air, respectively. The heat release rate increased with increasing fire source area, and heat release rates of 5.027×10-3 ㎡ and 1.131×10-2 ㎡ in size were measured to be 1.01 kW and 5.51 kW, respectively. For both fire source cases in the present experimental range, regardless of the water flow rates, the ethanol fires were extinguished successfully under the high air flow rate condition (e.g., above 40 L/min). On the other hand, under all water flow rate conditions, the fire extinguishing time and water consumption decreased with increasing air flow rate, which were approximately 23 s and 185 g under high air flow rate conditions (e.g., above 50 L/min), respectively. Based on the water consumption per heat release rate, the present experimental data were compared with the previous ones using a single-fluid nozzle, and it was found that the twin-fluid nozzle could extinguish a fire with a lower water consumption than a single-fluid one.

Improvement in flow and noise performance of backward centrifugal fan by redesigning airfoil geometry (익형 형상 재설계를 통한 후향익 원심팬의 유동 및 소음성능 개선)

  • Jung, Minseung;Choi, Jinho;Ryu, Seo-Yoon;Cheong, Cheolung;Kim, Tae-hoon;Koo, Junhyo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.6
    • /
    • pp.555-565
    • /
    • 2021
  • The goal of this study is to improve flow and noise performances of existing backward-curved blade centrifugal fan system used for circulating cold air in a refrigerator freezer by optimally designing airfoil shape. The unique characteristics of the system is to drive cold airflow with two volute tongues in combination with duct system in a back side of a refrigerator without scroll housing generally used in a typical centrifugal fan system. First, flow and noise performances of existing fan system were evaluated experimentally. A P-Q curve was obtained using a fan performance tester in the flow experiment, and noise spectrum was measured in an anechoic chamber in the noise experiment. Then, flow characteristics were numerically analyzed by solving the three-dimensional unsteady Navier-Stokes equations and noise analysis was performed by solving the Ffowcs Williams and Hawkins equation with input from the flow simulation results. The validity of numerical results was confirmed by comparing them with the measured ones. Based on the verified numerical method, blade inlet and outlet angles were optimized for maximum flow rate using the two-factor central composite design of the response surface method. Finally, the flow and noise performances of a prototype manufactured with the optimum design were experimentally evaluated, which showed the improvement in flow and noise performance.

A Thermal Analysis for the Underground Power Transmission Cable by a Water Pipe Cooling Method with Trough in Tunnel (전력구트라프간접수냉방식에서의 지중송전케이블에 대한 열해석)

  • Park, Man-Heung
    • Solar Energy
    • /
    • v.15 no.3
    • /
    • pp.59-73
    • /
    • 1995
  • The thermal analysis is accomplished with the route for the underground power transmission system which adopts the water pipe cooling with trough in tunnel. As a result, in case of a cooling system based on a refrigerator, the optimum condition for the flow rate of cooling water and the air velocity are calculated as the $2{\sim}3{\ell}/s/pipe$ and $1{\sim}2m/s/fan$, respectively. On the other hand, in case of cooling tower the optimum condition for them are calculated as the $2{\sim}3{\ell}/s/pipe$ and 6 m/s/fan, respectively. But the cooling system based on a cooling tower has the problem of enlarging the size of cooling fan and suppressing the labor of operator in tunnel. Therefore, to meet all the cooling conditions for a given cooling section, the cooling system based on a refrigerator is more acceptable.

  • PDF

A Study on the Recirculation Flow Characteristics with the Change of Shape in a Flue Gas Recirculation Device using Coanda Nozzle (코안다 노즐을 이용한 배기가스 재순환 장치의 형상에 따른 재순환 유동 특성에 관한 연구)

  • Ha, Ji Soo;Shim, Sung Hun;Kim, Dae Yeon
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.3
    • /
    • pp.1-6
    • /
    • 2019
  • The purpose of the present study is to elucidate flue gas recirculation device for reduction of nitrogen oxides using coanda nozzle without adopting additional power driving fan in a waste incinerator. The characteristics of the exhaust gas recirculation flow rate and the average temperature change at the outlet of the mixed gas were investigated according to the change of air supply nozzle gap and the position of air supply nozzle. When the gap of the air supply nozzle was changed to 3.22, 4.03, and 4.84 mm, the largest recirculation flow ratio, which is the ratio of exhaust gas recirculation flow rate and air supply flow rate, was 2.227 for the case with 3.22 mm and its mean temperature at outlet was $594.8^{\circ}C$. When the position of the air supply nozzle changes to the front position, neck position, and expansion position of the coanda nozzle neck, the recirculation flow ratios at the forward position and the neck position were nearly almost the same value, 1.843, and 1.696 at the expansion position, their mean temperatures were $559.8^{\circ}C$ and $544.3^{\circ}C$, respectively.

Numerical Study on the Cooling Characteristics of a Passive-Type PEMFC Stack (수동공기공급형 고분자 전해질 연료전지 스택에서의 냉각특성에 대한 전산해석 연구)

  • Lee, Jae-Hyuk;Kim, Bo-Sung;Lee, Yong-Taek;Kim, Yong-Chan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.8
    • /
    • pp.767-774
    • /
    • 2010
  • In a passive-type PEMFC stack, axial fans operate to supply both oxidant and coolant to cathode side of the stack. It is possible to make a simple system because the passive-type PEMFC stack does not require additional cooling equipment. However, the performance of a cooling system in which water is used as a coolant is better than that of the air-cooling system. To ensure system reliability, it is essential to make cooling system effective by adopting an optimal stack design. In this study, a numerical investigation has been carried out to identify an optimum cooling strategy. Various channel configurations were applied to the test section. The passive-type PEMFC was tested by varying airflow rate distribution at the cathode side and external heat transfer coefficient of the stack. The best cooling performance was achieved when a channel with thick ribs was used, and the overheating at the center of the stack was reduced when a case in which airflow was concentrated at the middle of the stack was used.

A study of the watershed water balance using the actual evapotranspiration with Flux tower in 2022 (2022년 Flux tower의 실제 증발산량을 활용한 유역 물수지 검토)

  • Kiyoung Kim;Yongjun Lee
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.295-295
    • /
    • 2023
  • 물수지 분석은 우리가 사용하는 물의 순환과정을 파악하여 우리 생활에 필요한 물을 안정적으로 공급하고 관리하기 위한 기초 자료이다. 물관리 기본법 제11조에도 유역 간의 물관리는 조화와 균형을 이루고 있는 기본원칙으로 설명되고 있으며 지속가능한 개발, 이용과 보전을 도모하고 물로인해 발생하는 재해를 예방하기 위해서는 유역단위로 관리되어야 함을 원칙으로 두고 있다. 최근 들어 국내에서는 강수량과 유량에 대한 조사가 급격히 발전함에 따라 정확도 높은 관측이 수행되고 있는 반면에 증발산량 같은 경우에는 경험식에 의존하여 측정자료를 산정하고 있는 실정이다. 증발산량은 눈에 보이지 않아 비교적 중요성을 인지하고 있지 못하나 강수량의 약 30~40%를 차지함으로 오차를 무시하기 어려우며 보다 정확한 관측이 필요하다. 실측으로는 증발접시가 있지만 물이 항상 차 있어야 하며, 팬의 가열, 강수 등 관측값 보정이 필요하다. 최근 기술의 발전으로 에디공분산 방법이 장비로 구현할 수 있게 되었으며 이러한 방법은 기존의 장비에서 발생되는 근본적인 문제점을 해결하였다. 특히 증발과 증산을 모두 측정이 가능하며 실제 증발산량 측정이 가능하다. 환경부에서는 에디공분산을 활용한 증발산량 관측소 13개소를 운영하고 있으며 관측소 인근 실제 유량측정하고 있는 지역과 연계하여 실측 기반의 물수지 검토를 수행해보고자 한다.

  • PDF