• Title/Summary/Keyword: 패턴 발견

Search Result 590, Processing Time 0.028 seconds

Constructing Gene Regulatory Networks using Frequent Gene Expression Pattern and Chain Rules (빈발 유전자 발현 패턴과 연쇄 규칙을 이용한 유전자 조절 네트워크 구축)

  • Lee, Heon-Gyu;Ryu, Keun-Ho;Joung, Doo-Young
    • The KIPS Transactions:PartD
    • /
    • v.14D no.1 s.111
    • /
    • pp.9-20
    • /
    • 2007
  • Groups of genes control the functioning of a cell by complex interactions. Such interactions of gene groups are tailed Gene Regulatory Networks(GRNs). Two previous data mining approaches, clustering and classification, have been used to analyze gene expression data. Though these mining tools are useful for determining membership of genes by homology, they don't identify the regulatory relationships among genes found in the same class of molecular actions. Furthermore, we need to understand the mechanism of how genes relate and how they regulate one another. In order to detect regulatory relationships among genes from time-series Microarray data, we propose a novel approach using frequent pattern mining and chain rules. In this approach, we propose a method for transforming gene expression data to make suitable for frequent pattern mining, and gene expression patterns we detected by applying the FP-growth algorithm. Next, we construct a gene regulatory network from frequent gene patterns using chain rules. Finally, we validate our proposed method through our experimental results, which are consistent with published results.

An Use of the Patterns for an Efficient Example-Based Machine Translation (효율적인 예제 기반 기계번역을 위한 패턴의 사용)

  • Lee, Gi-Yeong;Kim, Han-U
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.37 no.3
    • /
    • pp.1-11
    • /
    • 2000
  • An example-based machine translation approach is a new paradigm for resolving various problems caused by the rules of conventional rule-based machine translation. But, in pure example-based machine translation, it is very hard to find similar examples matched with input sentences by using reasonable parallel corpus. This problem causes large overheads in the process of sentence generation. This paper proposes new method of English-Korean transfer using both patterns and examples. The patterns are composed of sentence patterns and phrase patterns. Meta parts of the patterns make the example-based machine translation more practical by raising the probability to find similar examples. The use of patterns and examples can reduce the ambiguities in source language analysis and give us a high quality of MT. And experimental results with a test corpus are discussed.

  • PDF

An Incremental data mining based on Active system (능동 기반의 점진적 데이터 마이닝)

  • 연영광;신예호;류근호
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.10a
    • /
    • pp.54-56
    • /
    • 2000
  • 데이터 마이닝 작업에서 사용되는 데이터의 크기는 그 특성상 대규모를 이루고 있다. 이러한 대규모의 데이터로부터 규칙을 추출하는 작업은 많은 배용이 소모된다. 또한 급변하는 데이터는 이미 발견된 마이닝 패턴에 대하여 현저한 패턴은 약한 패턴으로, 반면 약한 패턴은 현저한 패턴으로 변화시키는 요인이 되고 있다. 이러한 동적 환경에서는 기존의 데이터베이스 특정시간의 스냅 샷 형태의 데이터를 이용하였던 마이닝 방법으로는 적당하지 못하다. 따라서 이 논문에서는 동적인 환경에서 적용할 수 있는 점진적 마이닝 방법을 제시하고, 점진적 마이닝 작업이 효과적으로 수행 가능한 능동시스템 모델을 제시한다.

  • PDF

Web Access Pattern Mining considering Page Visiting Duration Time (페이지 소요 시간을 고려한 웹 액세스 패턴 마이닝)

  • 성현정;용환승
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.10a
    • /
    • pp.55-57
    • /
    • 2001
  • 웹로그 마이닝은 대용량의 웹로그 데이터로부터 웹액세스 패턴을 추출함으로써 사용자의 행등 패턴을 찾아내는데 이러한 작업은 웹사이트 설계상의 문제점 등을 발견 및 보완하거나 사용자에게 개인화 페이지를 제공하는데 이용될 수 있다. 사용자의 관심도를 반영하는 웹액세스 패턴을 추출할 때 페이지의 액세스 횟수 뿐만 아니라 페이지의 소요 시간까지 고려함으로써 더욱 정확한 액세스 패턴을 추출하는 것이 본 논문의 목적이다.

  • PDF

Development and Application of An Adaptive Web Site Construction Algorithm (적응형 웹 사이트 구축을 위한 연관규칙 알고리즘 개발과 적용)

  • Choi, Yun-Hee;Jun, Woo-Chun
    • The KIPS Transactions:PartD
    • /
    • v.16D no.3
    • /
    • pp.423-432
    • /
    • 2009
  • Advances in information and communication technologies are changing our society greatly. In knowledge-based society, information can be obtained easily via communication tools such as web and e-mail. However, obtaining right and up-to-date information is difficult in spite of overflowing information. The concept of adaptive web site has been initiated recently. The purpose of the site is to provide information only users want out of tons of data gathered. In this paper, an algorithm is developed for adaptive web site construction. The proposed algorithm is based on association rules that are major principle in adaptive web site construction. The algorithm is constructed by analysing log data in web server and extracting meaning documents through finding behavior patterns of users. The proposed algorithm has the following characteristics. First, it is superior to existing algorithms using association rules in time complexity. Its superiority is proved theoretically. Second, the proposed algorithm is effective in space complexity. This is due to that it does not need any intermediate products except a linked list that is essential for finding frequent item sets.

A High-speed Packet Filtering System Architecture in Signature-based Network Intrusion Prevention (시그내쳐 기반의 네트워크 침입 방지에서 고속의 패킷 필터링을 위한 시스템 구조)

  • Kim, Dae-Young;Kim, Sun-Il;Lee, Jun-Yong
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.34 no.2
    • /
    • pp.73-83
    • /
    • 2007
  • In network intrusion prevention, attack packets are detected and filtered out based on their attack signatures. Pattern matching is extensively used to find attack signatures and the most time-consuming execution part of Network Intrusion Prevention Systems(NIPS). Pattern matching is usually accelerated by hardware and should be performed at wire speed in NIPS. However, that alone is not good enough. First, pattern matching hardware should be able to generate sufficient pattern match information including the pattern index number and the location of the match found at wire speed. Second, it should support pattern grouping to reduce unnecessary pattern matches. Third, it should always have a constant worst-case performance even if the number of patterns is increased. Finally it should be able to update patterns in a few minutes or seconds without stopping its operations, We propose a system architecture to meet the above requirement. The system architecture can process multiple pattern characters in parallel and employs a pipeline architecture to achieve high speed. Using Xilinx FPGA simulation, we show that the new system stales well to achieve a high speed oner 10Gbps and satisfies all of the above requirements.

Trend-based Sequential Pattern Discovery from Time-Series Data (시계열 데이터로부터의 경향성 기반 순차패턴 탐색)

  • 오용생;이동하;남도원;이전영
    • Journal of Intelligence and Information Systems
    • /
    • v.7 no.1
    • /
    • pp.27-45
    • /
    • 2001
  • Sequential discovery from time series data has mainly concerned about events or item sets. Recently, the research has stated to applied to the numerical data. An example is sensor information generated by checking a machine state. The numerical data hardly have the same valuers while making patterns. So, it is important to extract suitable number of pattern features, which can be transformed to events or item sets and be applied to sequential pattern mining tasks. The popular methods to extract the patterns are sliding window and clustering. The results of these methods are sensitive to window sine or clustering parameters; that makes users to apply data mining task repeatedly and to interpret the results. This paper suggests the method to retrieve pattern features making numerical data into vector of an angle and a magnitude. The retrieved pattern features using this method make the result easy to understand and sequential patterns finding fast. We define an inclusion relation among pattern features using angles and magnitudes of vectors. Using this relation, we can fad sequential patterns faster than other methods, which use all data by reducing the data size.

  • PDF

Web Document Prediction System by using Web Log Mining (웹 로그 마이닝을 이용한 웹 문서 예측 시스템)

  • Lee Bum-suk;Hwang Byung-yeon
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.11b
    • /
    • pp.97-99
    • /
    • 2005
  • 웹 문서 수의 급격한 증가는 사용자로 하여금 방대한 양의 웹 문서들로부터 필요한 정보를 선별하기 위한 시간과 비용을 낭비하게 만들었다. 따라서 이러한 문제를 해결하기 위한 연구의 필요성이 점차 증가하였는데, 그 중 웹 서버 로그 데이터에 마이닝 기법을 적용하여 사용자들의 사이트 내 문서의 접근 패턴을 분석하고, 그 데이터를 이용하여 동적으로 변화하는 적응형 웹 사이트를 제공하려는 것이 대표적인 연구 사례이다. 본 논문에서는 웹 서버 로그 마이닝을 이용하여 사용자가 필요로 하거나, 관심을 가지고 있는 페이지를 예측하여 추천해 주는 시스템에 대해 소개한다. 이러한 시스템을 구현하기 위해 순차 패턴 마이닝이나 빈발 에피소드 발견 기법 등의 알고리즘을 사용할 수 있다. 제안하는 시스템에서는 사용자 접근 패턴을 분석할 때 순차 패턴 마이닝 기법을 사용하고, 사용자의 이동 패턴을 근거로 웹 문서를 예측하여 추천해줄 때에는 에피소드 발견 기법에서의 window 개념을 이용한다. 본 논문에서 제안한 시스템은 웹 문서를 사용자가 머물었던 시간에 따라 관심 있는 문서와 지나간 문서로 구분하여 관심 있는 문서에 대해서안 마이닝을 수행한다. 또한 일정한 크기를 갖는 History window에 의해 다음 문서를 추천해주기 때문에 사용자의 모든 로그를 저장하지 않으므로 보다 효율적이다.

  • PDF

Temporal and Spatial Variability of Rainfall Erosivity in South Korea (한국의 강우침식인자의 시공간적 변동성 분석)

  • Shin, Ju-Young;Lee, Joon-Hak;Kim, Taereem;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.164-164
    • /
    • 2018
  • 강우침식인자는 토양침식에 영향을 주는 한 인자이다. 강우침식인자는 강우강도, 강우량, 강우빈도 등과 같은 강우패턴으로 산정되는 값으로 기후변화로 인해 많은 지역에서 강우패턴의 변화가 관측되었기에 강우침식인자 또한 기후변화로 인한 변화가 예상된다. 한국의 강우의 시공간적인 변동성에 대한 연구는 많이 진행되었으나, 강우침식인자에 대한 연구는 아직까지 미흡한 상태이기 때문에 본 연구에서는 한국의 강우침식인자의 시공간적 변동성을 분석하였다. 강우강도, 강우량, 강우빈도, 강우지속기간 등 강우패턴을 결정하는 인자들 중 어떤 인자가 강우침식인자의 시간적인 변동성에 영향을 주는지 조사하였다. 시간적인 변동성을 조사하기 위해서 경향성 검사를 진행하였다. 적용된 경향성 검사는 Mann-Kendall test, 수정된 Mann-Kendall test, Block Bootstrapping Mann-Kendall test, T-test를 적용하였다. 검사결과 대부분의 지점에서는 강우침식인자에서는 경향성이 발견되지 않았다. 경향성이 발견된 지점에 대하여 경향성의 원인을 검토해본 결과, 복합적인 강우패턴 인자의 영향으로 인하여 강우침식인자의 경향성이 발생하는 것을 확인하였다. 강우패턴 인자 중에서는 유효강우사상의 강우량이 가장 큰 영향인자인 것을 확인 할 수 있었다.

  • PDF

Generator of Dynamic User Profiles Based on Web Usage Mining (웹 사용 정보 마이닝 기반의 동적 사용자 프로파일 생성)

  • An, Kye-Sun;Go, Se-Jin;Jiong, Jun;Rhee, Phill-Kyu
    • The KIPS Transactions:PartB
    • /
    • v.9B no.4
    • /
    • pp.389-390
    • /
    • 2002
  • It is important that acquire information about if customer has some habit in electronic commerce application of internet base that led in recommendation service for customer in dynamic web contents supply. Collaborative filtering that has been used as a standard approach to Web personalization can not get rapidly user's preference change due to static user profiles and has shortcomings such as reliance on user ratings, lack of scalability, and poor performance in the high-dimensional data. In order to overcome this drawbacks, Web usage mining has been prevalent. Web usage mining is a technique that discovers patterns from We usage data logged to server. Specially. a technique that discovers Web usage patterns and clusters patterns is used. However, the discovery of patterns using Afriori algorithm creates many useless patterns. In this paper, the enhanced method for the construction of dynamic user profiles using validated Web usage patterns is proposed. First, to discover patterns Apriori is used and in order to create clusters for user profiles, ARHP algorithm is chosen. Before creating clusters using discovered patterns, validation that removes useless patterns by Dempster-Shafer theory is performed. And user profiles are created dynamically based on current user sessions for Web personalization.