Proceedings of the Korean Information Science Society Conference
/
2004.10a
/
pp.214-216
/
2004
순차패턴 마이닝은 데이터들 속에서 어떤 순차 관계가 들어 있는 패턴을 찾는 것이다. 순차 패턴은 다양한 분야에서 중요하게 쓰인다. 예를 들어, 소비자가 구입한 물품들 간의 순차적인 관계성은 다음에 구입할 물건을 예측하는데 쓰일 수 있다. 또한 방문 웹 페이지의 순차 패턴은 사용자가 방문하고자 하는 다음 페이지를 예측하는데 중요할 수 있다. 본 논문에서는 다차원 순차패턴을 마이닝하는 새로운 효율적인 알고리즘의 구현에 대해 설명한다 다차원 순차 패턴 마이닝은 속성-값(attribute-value) 기술을 포함하는 순차 패턴의 연관 규칙을 찾는 것이다. 다음의 두 가지의 현존하는 효율적 알고리즘을 융합하였다. 순차패턴 마이닝을 위한 PrefixSpan 알고리즘과 비 순차패턴 마이닝을 위한 StarCubing 알고리즘. 새로운 알고리즘은 다차원 데이터를 마이닝 하는 StarCubing알고리즘의 효율성을 이용하므로 다차원 순차 데이터를 마이닝 하는데 효율적일 것이다. 실험결과는 제안한 알고리즘이 특히 작은 최소지지도와 작은 cardinality에서 Seq-Dim과 Dim-Seq 같은 현존하는 알고리즘보다 나은 성능임을 보여준다.
Data mining techniques have been suggested to find efficiently meaningful and useful information. Especially, in the big data environments, as data becomes accumulated in several applications, related pattern mining methods have been proposed. Recently, instead of analyzing not only static data stored already in files or databases, mining dynamic data incrementally generated in a real time is considered as more interesting research areas because these dynamic data can be only one time read. With this reason, researches of how these dynamic data are mined efficiently have been studied. Moreover, approaches of mining representative patterns such as maximal pattern mining have been proposed since a huge number of result patterns as mining results are generated. As another issue, to discover more meaningful patterns in real world, weights of items in weighted pattern mining have been used, In real situation, profits, costs, and so on of items can be utilized as weights. In this paper, we analyzed weighted maximal pattern mining approaches for data generated incrementally. Maximal representative pattern mining techniques, and incremental pattern mining methods. And then, the application scenarios for analyzing the required commodity patterns in infants are presented by applying weighting representative pattern mining. Furthermore, the performance of state-of-the-art algorithms have been evaluated. As a result, we show that incremental weighted maximal pattern mining technique has better performance than incremental weighted pattern mining and weighted maximal pattern mining.
Proceedings of the Korean Information Science Society Conference
/
2000.10a
/
pp.54-56
/
2000
데이터 마이닝 작업에서 사용되는 데이터의 크기는 그 특성상 대규모를 이루고 있다. 이러한 대규모의 데이터로부터 규칙을 추출하는 작업은 많은 배용이 소모된다. 또한 급변하는 데이터는 이미 발견된 마이닝 패턴에 대하여 현저한 패턴은 약한 패턴으로, 반면 약한 패턴은 현저한 패턴으로 변화시키는 요인이 되고 있다. 이러한 동적 환경에서는 기존의 데이터베이스 특정시간의 스냅 샷 형태의 데이터를 이용하였던 마이닝 방법으로는 적당하지 못하다. 따라서 이 논문에서는 동적인 환경에서 적용할 수 있는 점진적 마이닝 방법을 제시하고, 점진적 마이닝 작업이 효과적으로 수행 가능한 능동시스템 모델을 제시한다.
Recently many LBS(Location Based Service) systems are issued in mobile computing systems. Spatial-Temporal Moving Sequence Pattern Mining is a new mining method that mines user moving patterns from user moving path histories in a sensor network environment. The frequent pattern mining is related to the items which customers buy. But on the other hand, our mining method concerns users' moving sequence paths. In this paper, we consider the sequence of moving paths so we handle the repetition of moving paths. Also, we consider the duration that user spends on the location. We proposed new Apriori_msp based on the Apriori algorithm and evaluated its performance results.
Data mining techniques are used to find important and meaningful information from huge databases, and pattern mining is one of the significant data mining techniques. Pattern mining is a method of discovering useful patterns from the huge databases. Frequent pattern mining which is one of the pattern mining extracts patterns having higher frequencies than a minimum support threshold from databases, and the patterns are called frequent patterns. Traditional frequent pattern mining is based on a single minimum support threshold for the whole database to perform mining frequent patterns. This single support model implicitly supposes that all of the items in the database have the same nature. In real world applications, however, each item in databases can have relative characteristics, and thus an appropriate pattern mining technique which reflects the characteristics is required. In the framework of frequent pattern mining, where the natures of items are not considered, it needs to set the single minimum support threshold to a too low value for mining patterns containing rare items. It leads to too many patterns including meaningless items though. In contrast, we cannot mine any pattern if a too high threshold is used. This dilemma is called the rare item problem. To solve this problem, the initial researches proposed approximate approaches which split data into several groups according to item frequencies or group related rare items. However, these methods cannot find all of the frequent patterns including rare frequent patterns due to being based on approximate techniques. Hence, pattern mining model with multiple minimum supports is proposed in order to solve the rare item problem. In the model, each item has a corresponding minimum support threshold, called MIS (Minimum Item Support), and it is calculated based on item frequencies in databases. The multiple minimum supports model finds all of the rare frequent patterns without generating meaningless patterns and losing significant patterns by applying the MIS. Meanwhile, candidate patterns are extracted during a process of mining frequent patterns, and the only single minimum support is compared with frequencies of the candidate patterns in the single minimum support model. Therefore, the characteristics of items consist of the candidate patterns are not reflected. In addition, the rare item problem occurs in the model. In order to address this issue in the multiple minimum supports model, the minimum MIS value among all of the values of items in a candidate pattern is used as a minimum support threshold with respect to the candidate pattern for considering its characteristics. For efficiently mining frequent patterns including rare frequent patterns by adopting the above concept, tree based algorithms of the multiple minimum supports model sort items in a tree according to MIS descending order in contrast to those of the single minimum support model, where the items are ordered in frequency descending order. In this paper, we study the characteristics of the frequent pattern mining based on multiple minimum supports and conduct performance evaluation with a general frequent pattern mining algorithm in terms of runtime, memory usage, and scalability. Experimental results show that the multiple minimum supports based algorithm outperforms the single minimum support based one and demands more memory usage for MIS information. Moreover, the compared algorithms have a good scalability in the results.
침입탐지란 컴퓨터와 네트워크 자원에 대한 유해한 침입 행동을 식별하고 대응하는 과정이다. 점차적으로 시스템에 대한 침입의 유형들이 복잡해지고 전문적으로 이루어지면서 빠르고 정확한 대응을 할 수 있는 시스템이 요구되고 있다. 이에 대용량의 데이터를 분석하여 의미 있는 정보를 추출하는 데이터 마이닝 기법을 적용하여 지능적이고 자동화된 탐지 및 경보데이터 패턴 분석에 이용할 수 있다. 본 논문에서는 경보데이터 패턴 분석을 위해 시퀀스패턴기법을 적용한 경보데이터 마이닝 엔진을 구축한다. 구현된 경보데이터 마이닝 시스템은 기존의 시퀀스 패턴 알고리즘인 PrefixSpan 알고리즘을 확장 구현하여 경보데이터의 빈발 경보시퀀스 분석과 빈발 공격시퀀스 분석에 활용할 수 있다.
Proceedings of the Korea Information Processing Society Conference
/
2013.11a
/
pp.1061-1063
/
2013
기존의 많은 빈발 패턴 마이닝은 단일 최소 임계치를 전체 트랜잭션 데이터베이스의 각 아이템에 똑같이 적용하고 빈발 패턴을 마이닝해왔다. 단일 최소 임계치를 설정함으로써, 모든 아이템이 동일한 임계치가 적용되므로 레어 아이템 문제가 발생한다. 한편, 일정 주기마다 발생하는 정규 패턴이라고 한다. 실 세계에서는 빈발한 아이템 뿐만 아니라 주기적으로 발생하는 패턴정보의 필요성이 증가하고 있다. 본 논문은 레어 아이템 문제를 해결하는 빈발한 정규 패턴을 마이닝하는 기법을 제시한다.
Approximate Frequent pattern mining is to find approximate patterns, not exact frequent patterns with tolerable variations for more efficiency. As the size of database increases, much faster mining techniques are needed to deal with huge databases. Moreover, it is more difficult to discover exact results of mining patterns due to inherent noise or data diversity. In these cases, by mining approximate frequent patterns, more efficient mining can be performed in terms of runtime, memory usage and scalability. In this paper, we study the characteristics of an approximate mining algorithm based on probabilistic technique and run performance evaluation of the efficient approximate frequent pattern mining algorithm. Finally, we analyze the test results for more improvement.
Park, Min-Jae;Yoo, Hyuck-Jae;Ahn, Hyung-Jin;Won, Jae-Gang;Kim, Kwang-Hoon
Proceedings of the Korean Information Science Society Conference
/
2005.07b
/
pp.109-111
/
2005
비즈니스 프로세스를 연구하는데 있어 최근의 이슈는 비즈니스 프로세스가 복잡화되고 대량화됨에 따라, 비즈니스 프로세스를 좀더 효율적으로 개선하고자 하는 데에 맞춰져 있으며, 이러한 동향에 힘입어 워크플로우 마이닝이라는 연구분야가 생겨나게 되었다. 이에, 본 논문에서는 워크플로우 패턴을 기반으로 한 워크플로우 마이닝 기법에 관하여 연구하고, 기술한다. 첫째로, 기본적으로 워크플로우 마이닝 기술과 그의 근원이 되는 워크플로우 로그에 관하여 간략히 설명한다. 그리고, 패턴기반 워크플로우 마이닝을 하기 위한 기본적인 워크플로우 패턴에 관하여 기술하고, 패턴 기반 워크플로우 마이닝을 하기 위한 기법으로 몇 가지 알고리즘을 제시한다.
Since frequent pattern mining was proposed in order to search for hidden, useful pattern information from large-scale databases, various types of mining approaches and applications have been researched. Especially, frequent graph pattern mining was suggested to effectively deal with recent data that have been complicated continually, and a variety of efficient graph mining algorithms have been studied. Graph patterns obtained from graph databases have their own importance and characteristics different from one another according to the elements composing them and their lengths. However, traditional frequent graph pattern mining approaches have the limitations that do not consider such problems. That is, the existing methods consider only one minimum support threshold regardless of the lengths of graph patterns extracted from their mining operations and do not use any of the patterns' weight factors; therefore, a large number of actually useless graph patterns may be generated. Small graph patterns with a few vertices and edges tend to be interesting when their weighted supports are relatively high, while large ones with many elements can be useful even if their weighted supports are relatively low. For this reason, we propose a weight-based frequent graph pattern mining algorithm considering length-decreasing support constraints. Comprehensive experimental results provided in this paper show that the proposed method guarantees more outstanding performance compared to a state-of-the-art graph mining algorithm in terms of pattern generation, runtime, and memory usage.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.