• Title/Summary/Keyword: 패턴 교통정보

Search Result 238, Processing Time 0.023 seconds

Development of Neural Network Based Cycle Length Design Model Minimizing Delay for Traffic Responsive Control (실시간 신호제어를 위한 신경망 적용 지체최소화 주기길이 설계모형 개발)

  • Lee, Jung-Youn;Kim, Jin-Tae;Chang, Myung-Soon
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.3 s.74
    • /
    • pp.145-157
    • /
    • 2004
  • The cycle length design model of the Korean traffic responsive signal control systems is devised to vary a cycle length as a response to changes in traffic demand in real time by utilizing parameters specified by a system operator and such field information as degrees of saturation of through phases. Since no explicit guideline is provided to a system operator, the system tends to include ambiguity in terms of the system optimization. In addition, the cycle lengths produced by the existing model have yet been verified if they are comparable to the ones minimizing delay. This paper presents the studies conducted (1) to find shortcomings embedded in the existing model by comparing the cycle lengths produced by the model against the ones minimizing delay and (2) to propose a new direction to design a cycle length minimizing delay and excluding such operator oriented parameters. It was found from the study that the cycle lengths from the existing model fail to minimize delay and promote intersection operational conditions to be unsatisfied when traffic volume is low, due to the feature of the changed target operational volume-to-capacity ratio embedded in the model. The 64 different neural network based cycle length design models were developed based on simulation data surrogating field data. The CORSIM optimal cycle lengths minimizing delay were found through the COST software developed for the study. COST searches for the CORSIM optimal cycle length minimizing delay with a heuristic searching method, a hybrid genetic algorithm. Among 64 models, the best one producing cycle lengths close enough to the optimal was selected through statistical tests. It was found from the verification test that the best model designs a cycle length as similar pattern to the ones minimizing delay. The cycle lengths from the proposed model are comparable to the ones from TRANSYT-7F.

A Study on People Counting in Public Metro Service using Hybrid CNN-LSTM Algorithm (Hybrid CNN-LSTM 알고리즘을 활용한 도시철도 내 피플 카운팅 연구)

  • Choi, Ji-Hye;Kim, Min-Seung;Lee, Chan-Ho;Choi, Jung-Hwan;Lee, Jeong-Hee;Sung, Tae-Eung
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.2
    • /
    • pp.131-145
    • /
    • 2020
  • In line with the trend of industrial innovation, IoT technology utilized in a variety of fields is emerging as a key element in creation of new business models and the provision of user-friendly services through the combination of big data. The accumulated data from devices with the Internet-of-Things (IoT) is being used in many ways to build a convenience-based smart system as it can provide customized intelligent systems through user environment and pattern analysis. Recently, it has been applied to innovation in the public domain and has been using it for smart city and smart transportation, such as solving traffic and crime problems using CCTV. In particular, it is necessary to comprehensively consider the easiness of securing real-time service data and the stability of security when planning underground services or establishing movement amount control information system to enhance citizens' or commuters' convenience in circumstances with the congestion of public transportation such as subways, urban railways, etc. However, previous studies that utilize image data have limitations in reducing the performance of object detection under private issue and abnormal conditions. The IoT device-based sensor data used in this study is free from private issue because it does not require identification for individuals, and can be effectively utilized to build intelligent public services for unspecified people. Especially, sensor data stored by the IoT device need not be identified to an individual, and can be effectively utilized for constructing intelligent public services for many and unspecified people as data free form private issue. We utilize the IoT-based infrared sensor devices for an intelligent pedestrian tracking system in metro service which many people use on a daily basis and temperature data measured by sensors are therein transmitted in real time. The experimental environment for collecting data detected in real time from sensors was established for the equally-spaced midpoints of 4×4 upper parts in the ceiling of subway entrances where the actual movement amount of passengers is high, and it measured the temperature change for objects entering and leaving the detection spots. The measured data have gone through a preprocessing in which the reference values for 16 different areas are set and the difference values between the temperatures in 16 distinct areas and their reference values per unit of time are calculated. This corresponds to the methodology that maximizes movement within the detection area. In addition, the size of the data was increased by 10 times in order to more sensitively reflect the difference in temperature by area. For example, if the temperature data collected from the sensor at a given time were 28.5℃, the data analysis was conducted by changing the value to 285. As above, the data collected from sensors have the characteristics of time series data and image data with 4×4 resolution. Reflecting the characteristics of the measured, preprocessed data, we finally propose a hybrid algorithm that combines CNN in superior performance for image classification and LSTM, especially suitable for analyzing time series data, as referred to CNN-LSTM (Convolutional Neural Network-Long Short Term Memory). In the study, the CNN-LSTM algorithm is used to predict the number of passing persons in one of 4×4 detection areas. We verified the validation of the proposed model by taking performance comparison with other artificial intelligence algorithms such as Multi-Layer Perceptron (MLP), Long Short Term Memory (LSTM) and RNN-LSTM (Recurrent Neural Network-Long Short Term Memory). As a result of the experiment, proposed CNN-LSTM hybrid model compared to MLP, LSTM and RNN-LSTM has the best predictive performance. By utilizing the proposed devices and models, it is expected various metro services will be provided with no illegal issue about the personal information such as real-time monitoring of public transport facilities and emergency situation response services on the basis of congestion. However, the data have been collected by selecting one side of the entrances as the subject of analysis, and the data collected for a short period of time have been applied to the prediction. There exists the limitation that the verification of application in other environments needs to be carried out. In the future, it is expected that more reliability will be provided for the proposed model if experimental data is sufficiently collected in various environments or if learning data is further configured by measuring data in other sensors.

Computer Interface for the Disabled Using Gyro-sensors and Artificial Neural Network (자이로 센서와 인공신경망을 이용한 장애인용 컴퓨터)

  • 안용식;엄광문;김철승;허지운;나유진
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.5
    • /
    • pp.411-419
    • /
    • 2003
  • This paper aims at developing 'gyro-mouse' which provides decent and comfortable human-computer interface that supports the usage of such software as an internet-browser in PC for the people paralyzed in upper limbs. This interface operates on information collected from head movement to get the cursor control. The interface is composed of two modules. One is hardware module in which the head horizontal and vertical angular velocities are detected and transmitted into PC. The other is a PC software that translates the received data into movement and click signals of the mouse. The ANN (artificial neural network) learns the quick nodding pattern of each user as click input so that it can provide user-friendly interface. The performance of the system was evaluated by three indices that are click recognition rate. error in cursor position control. and click rate of the moving target box. The performance result of the gyro-mouse was compared with that of the optical-mouse to assess the efficiency of the gyro-mouse. The average click recognition rate was 93%, average error in cursor position control was 1.4∼5 times of optical mouse. and the click rate with 50 pixels target box was 40%(30 clicks/min) to that of optical mouse. The click rate increased monotonously with the number of trial from 35% to 44%. The suggested system is expected to provide a new possibility to communicate with the society.

An Empirical Study on the Spatial Effect of Distribution Patterns between Small Business and Social-environmental factors (소상공인 점포의 분포와 환경요인의 공간적 영향관계에 관한 실증연구)

  • YOO, Mu-Sang;CHOI, Don-Jeong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.1
    • /
    • pp.1-18
    • /
    • 2019
  • This research measured and visualized the spatial dependency and the spatial heterogeneity of the small business in Cheonan-si, Asan-si with $100m{\times}100m$ grids based on global and local spatial autocorrelation. First, we confirmed positive spatial autocorrelation of small business in the research area using Moran's I Index, which is ESDA(Exploratory Spatial Data Analysis). And then, through Getis-Ord $GI{\ast}$, one kind of LISA(Local Indicators of Spatial Association), local patterns of spatial autocorrelation were visualized. These verified that Spatial Regression Model is valid for the location factor analysis on small business commercial buildings. Next, GWR(Geographically Weighted Regression) was used to analyze the spatial relations between the distribution of small business, hourly mobile traffic-based floating population, land use attributes index, residence, commercial building, road networks, and the node of traffic networks. Final six variables were applied and the accessibility to bus stops, afternoon time floating population, and evening time floating population were excluded due to multicollinearity. By this, we demonstrated that GWR is statistically improved compared to OLS. We visualized the spatial influence of the individual variables using the regression coefficients and local coefficients of determinant of the six variables. This research applied the measured population information in a practical way. Reflecting the dynamic information of the urban people using the commercial area. It is different from other studies that performed commercial analysis. Finally, this research has a differentiated advantage over the existing commercial area analysis in that it employed hourly changing commercial service population data and it applied spatial statistical models to micro spatial units. This research proposed new framework for the commercial analysis area analysis.

Spatial Distribution of Urban Heat and Pollution Islands using Remote Sensing and Private Automated Meteorological Observation System Data -Focused on Busan Metropolitan City, Korea- (위성영상과 민간자동관측시스템 자료를 활용한 도시열섬과 도시오염섬의 공간 분포 특성 - 부산광역시를 대상으로 -)

  • HWANG, Hee-Soo;KANG, Jung Eun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.3
    • /
    • pp.100-119
    • /
    • 2020
  • During recent years, the heat environment and particulate matter (PM10) have become serious environmental problems, as increases in heat waves due to rising global temperature interact with weakening atmospheric wind speeds. There exist urban heat islands and urban pollution islands with higher temperatures and air pollution concentrations than other areas. However, few studies have examined these issues together because of a lack of micro-scale data, which can be constructed from spatial data. Today, with the help of satellite images and big data collected by private telecommunication companies, detailed spatial distribution analyses are possible. Therefore, this study aimed to examine the spatial distribution patterns of urban heat islands and urban pollution islands within Busan Metropolitan City and to compare the distributions of the two phenomena. In this study, the land surface temperature of Landsat 8 satellite images, air temperature and particulate matter concentration data derived from a private automated meteorological observation system were gridded in 30m × 30m units, and spatial analysis was performed. Analysis showed that simultaneous zones of urban heat islands and urban pollution islands included some vulnerable residential areas and industrial areas. The political migration areas such as Seo-dong and Bansong-dong, representative vulnerable residential areas in Busan, were included in the co-occurring areas. The areas have a high density of buildings and poor ventilation, most of whose residents are vulnerable to heat waves and air pollution; thus, these areas must be considered first when establishing related policies. In the industrial areas included in the co-occurring areas, concrete or asphalt concrete-based impervious surfaces accounted for an absolute majority, and not only was the proportion of vegetation insufficient, there was also considerable vehicular traffic. A hot-spot analysis examining the reliability of the analysis confirmed that more than 99.96% of the regions corresponded to hot-spot areas at a 99% confidence level.

Incremental Ensemble Learning for The Combination of Multiple Models of Locally Weighted Regression Using Genetic Algorithm (유전 알고리즘을 이용한 국소가중회귀의 다중모델 결합을 위한 점진적 앙상블 학습)

  • Kim, Sang Hun;Chung, Byung Hee;Lee, Gun Ho
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.7 no.9
    • /
    • pp.351-360
    • /
    • 2018
  • The LWR (Locally Weighted Regression) model, which is traditionally a lazy learning model, is designed to obtain the solution of the prediction according to the input variable, the query point, and it is a kind of the regression equation in the short interval obtained as a result of the learning that gives a higher weight value closer to the query point. We study on an incremental ensemble learning approach for LWR, a form of lazy learning and memory-based learning. The proposed incremental ensemble learning method of LWR is to sequentially generate and integrate LWR models over time using a genetic algorithm to obtain a solution of a specific query point. The weaknesses of existing LWR models are that multiple LWR models can be generated based on the indicator function and data sample selection, and the quality of the predictions can also vary depending on this model. However, no research has been conducted to solve the problem of selection or combination of multiple LWR models. In this study, after generating the initial LWR model according to the indicator function and the sample data set, we iterate evolution learning process to obtain the proper indicator function and assess the LWR models applied to the other sample data sets to overcome the data set bias. We adopt Eager learning method to generate and store LWR model gradually when data is generated for all sections. In order to obtain a prediction solution at a specific point in time, an LWR model is generated based on newly generated data within a predetermined interval and then combined with existing LWR models in a section using a genetic algorithm. The proposed method shows better results than the method of selecting multiple LWR models using the simple average method. The results of this study are compared with the predicted results using multiple regression analysis by applying the real data such as the amount of traffic per hour in a specific area and hourly sales of a resting place of the highway, etc.

A Study on the Determinants of Demand for Visiting Department Stores Using Big Data (POS) (빅데이터(POS)를 활용한 백화점 방문수요 결정요인에 관한 연구)

  • Shin, Seong Youn;Park, Jung A
    • Land and Housing Review
    • /
    • v.13 no.4
    • /
    • pp.55-71
    • /
    • 2022
  • Recently, the domestic department store industry is growing into a complex shopping cultural space, which is advanced and differentiated by changes in consumption patterns. In addition, competition is intensifying across 70 places operated by five large companies. This study investigates the determinants of the visits to department stores using the big data concept's automatic vehicle access system (pos) and proposes how to strengthen the competitiveness of the department store industry. We use a negative binomial regression test to predict the frequency of visits to 67 branches, except for three branches whose annual sales were incomplete due to the new opening in 2021. The results show that the demand for visiting department stores is positively associated with airport, terminal, and train stations, land areas, parking lots, VIP lounge numbers, luxury store ratio, F&B store numbers, non-commercial areas, and hotels. We suggest four strategies to enhance the competitiveness of domestic department stores. First, department store consumers have a high preference for luxury brands. Therefore, department stores need to form their own overseas buyer teams to discover and attract new luxury brands and attract customers who have a high demand for luxury brands. In addition, to attract consumers with high purchasing power and loyalty, it is necessary to provide more differentiated products and services for VIP customers than before. Second, it is desirable to focus on transportation hub areas such as train stations, airports, and terminals in Gyeonggi and Incheon. Third, department stores should attract tenants who can satisfy customers, given that key tenants are an important component of advanced shopping centers for department stores. Finally, the department store, a top-end shopping center, should be developed as a space with differentiated shopping, culture, dining out, and leisure services, such as "The Hyundai", which opened in 2021, to ensure future growth potential.

Monitoring Ground-level SO2 Concentrations Based on a Stacking Ensemble Approach Using Satellite Data and Numerical Models (위성 자료와 수치모델 자료를 활용한 스태킹 앙상블 기반 SO2 지상농도 추정)

  • Choi, Hyunyoung;Kang, Yoojin;Im, Jungho;Shin, Minso;Park, Seohui;Kim, Sang-Min
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_3
    • /
    • pp.1053-1066
    • /
    • 2020
  • Sulfur dioxide (SO2) is primarily released through industrial, residential, and transportation activities, and creates secondary air pollutants through chemical reactions in the atmosphere. Long-term exposure to SO2 can result in a negative effect on the human body causing respiratory or cardiovascular disease, which makes the effective and continuous monitoring of SO2 crucial. In South Korea, SO2 monitoring at ground stations has been performed, but this does not provide spatially continuous information of SO2 concentrations. Thus, this research estimated spatially continuous ground-level SO2 concentrations at 1 km resolution over South Korea through the synergistic use of satellite data and numerical models. A stacking ensemble approach, fusing multiple machine learning algorithms at two levels (i.e., base and meta), was adopted for ground-level SO2 estimation using data from January 2015 to April 2019. Random forest and extreme gradient boosting were used as based models and multiple linear regression was adopted for the meta-model. The cross-validation results showed that the meta-model produced the improved performance by 25% compared to the base models, resulting in the correlation coefficient of 0.48 and root-mean-square-error of 0.0032 ppm. In addition, the temporal transferability of the approach was evaluated for one-year data which were not used in the model development. The spatial distribution of ground-level SO2 concentrations based on the proposed model agreed with the general seasonality of SO2 and the temporal patterns of emission sources.