• Title/Summary/Keyword: 패턴입력

Search Result 1,306, Processing Time 0.035 seconds

A Study on the User Identification System Based on Iris Pattern using GHA (GHA를 이용한 홍채 패턴기반의 사용자 인증 시스템에 관한 연구)

  • 주동현;염동훈;고기영;김두영
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2001.06a
    • /
    • pp.205-208
    • /
    • 2001
  • 본 논문은 Biometrics분야 중 다른 생체학적 특징보다도 정확도면에서 가장 뛰어난 특징인 안구의 홍채 패턴을 이용하여 사용자를 인증 하는 시스템에 관한 연구이다. 입력된 안구 영상으로부터 전처리과정을 거쳐 극좌표 변환을 통해 홍채 패턴을 추출한 후 웨이블릿 변환을 이용하여 특징패턴을 압축하였으며, PCA(Principal Component Analysis:주성분 해석)의 한 종류인 GHA(Generalized Hebbian Algorithm)를 사용하여 등록된 사용자의 패턴 DB 에서 Basis 배열을 추출하고, 구축된 Basis 배열과 입력 영상 패턴과의 비교 Matching을 통하여 사용자를 인증하는 시스템을 제안한다.

  • PDF

Inverse halftoning algorithm using local binary pattern based lookup table (국부 이진패턴 기반 참조표를 이용한 역 하프토닝 알고리즘)

  • Seo, Won-Kyo;Cho, Nam-Ik
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2015.11a
    • /
    • pp.134-136
    • /
    • 2015
  • 영상 역 하프토닝은 입력된 하프톤 영상으로부터 그레이 영상을 복원시키는 것으로, 하프톤 영상으로 처리하지 못하는 다양한 영상처리를 가능하게 해주는 방법이다. 기존의 참조표를 이용한 역 하프토닝 방법은 다양한 하프톤 영상과 원본 그레이 영상으로부터 추출한 정보를 이용해 입력 영상을 복원시키는데, 본 논문에서는 이를 바탕으로 하여 영상의 질을 전반적으로 향상시킬 수 있는 국부적인 이진 패턴 기반 참조표를 이용한 영상 역 하프토닝 방법을 제안한다. 먼저 참조표를 이용한 역하프토닝 방법을 이용해 영상을 복원한 후 각 픽셀에서의 국부 이진패턴을 계산하여 각 픽셀 값을 패턴에 따라 분류한다. 분류된 패턴 정보에 따라 국부 이진 패턴 기반 참조표를 생성하고 이를 통해 입력 하프톤 영상에 대한 역 하프토닝을 수행한다. 실험 결과는 제안하는 알고리즘이 오류 확산법에 의해 변환된 하프톤 이미지를 역 하프토닝 했을 때, 기존의 역 하프토닝 방법에 비해 더 나은 PSNR을 달성하는 것을 보인다.

  • PDF

An Enhanced Fuzzy ART Algorithm for The Identifier Recognition from Shipping Container Image (운송 컨테이너 영상의 식별자 인식을 위한 개선된 퍼지 ART 알고리즘)

  • 류재욱;김태경;김광백
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.12a
    • /
    • pp.365-369
    • /
    • 2002
  • 퍼지 ART 알고리즘에서 경계 변수는 패턴들을 클러스터링하는데 있어서 반지름 값이 되며 임의의 패턴과 저장된 패턴과의 불일치(mismatch) 허용도를 결정한다. 이 경계 변수가 크면 입력 벡터와 기대 벡터 사이에 약간의 차이가 있어도 새로운 카테고리(category)로 분류하게 핀다. 반대로 경계 변수가 작으면 입력 벡터와 기대 벡터 사이에 많은 차이가 있더라도 유사성이 인정되어 입력 벡터들을 대략적으로 분류한다. 따라서 영상 인식에 적용하기 위해서는 경험적으로 경계 변수를 설정해야 단점이 있다. 그리고 연결 가중치를 조정하는 과정에서 저장된 패턴들의 정보들이 손실되는 경우가 발생하여 인식율을 저하시킨다. 된 논문에서는 퍼지 ART 알고리즘의 문제점을 개선하기 위하여 퍼지 논리 접속 연산자를 이용하여 경계 변수를 동적으로 조정하고 저장 패턴들과 학습 패턴간의 실제적인 왜곡 정도를 충분히 고려하여 승자 노드로 선택된 빈도수를 가중치 조정에 적용한 개선된 퍼지 ART 알고리즘을 제안하였다. 제안된 방법의 성능을 확인하기 위해서 실제 운송 컨테이너 영상들을 대상으로 실험한 결과, 기존의 ART2 알고리즘이나 퍼지 ART 알고리즘보다 클러스터의 수가 적게 생성되었고 인식 성능도 기존의 방법들보다 우수한 성능이 있음을 확인하였다.

Patterns Recognition Using Translation-Invariant Wavelet Transform (위치 이동에 무관한 웨이블렛 변환을 이용한 패턴 인식)

  • 김국진;조성원;김재민
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.12a
    • /
    • pp.305-308
    • /
    • 2002
  • 패턴 인식(Patterns Recognition)은 인공 지능의 한 분야로서 이해할 수 있는데, 요즈음은 보안과 관련하여 많은 연구가 진행되고 있다. 웨이블렛 변환(Wavelet Transform)은 공간-주파수 영역에서 신호의 국소화를 효율적으로 구현할 수 있다. 하지만, 이를 패턴 인식의 특징 추출에 그대로 이용할 경우 입력 신호의 위치 이동 등이 문제가 되며, 이것은 또한 에러 요인이 된다. 본 논문에서는 웨이블렛 변환을 패턴 인식에 적용할 경우 발생하는 입력 신호의 위치이동에 따른 문제점을 보완하여, 개선된 방법으로 패턴 인식에 사용할 수 있는 알고리즘을 제안하며, 실험 결과를 바탕으로 그의 타당성을 보인다.

Car License Plate Extraction and Recognition Using Vertical/Horizontal Intensity Variation and Circular Pattern Vector (수직 및 수평 명암도 변화값과 원형 패턴벡터를 이용한 차량번호판 추출 및 인식 알고리즘)

    • The KIPS Transactions:PartB
    • /
    • v.8B no.2
    • /
    • pp.195-200
    • /
    • 2001
  • 본 논문에서는 실제 입력 차량 영상으로부터 명암도 변화 정보와 원형 패턴 벡터를 이용하여 차량 번호판을 인식하는 알고리즘을 제안하였다. 일반적으로 차량 영상에서는 번호판 영역에서 문자와 배경이 뚜렷하게 구별되고, 일정한 명암도 변화를 가지면서 번호판 이외의 다른 영역 보다 빌집도가 높은 특성이 있다. 따라서 본 논문에서는 이러한 성질을 이용하여 먼저 명암도 변화값을 사용하여 번호판을 추출하도록 하였으며 영상 입력 과정에서 외부 환경에 따라 차량 영상이 어둡거나 밝게 입력될 경우에도 동일한 추출 성능을 얻기 위하여 밝기 보정 과정을 수행하였다. 또한 추출된 번호판 영역으로부터 입력 문자의 크기, 이동 및 회전에 무관한 특성 추출을 위해 원형 패턴 벡터를 이용하여 차량 번호를 인식하도록 하였다. 제안한 알고리즘을 적용한 결과 번호판 추출이 가능하였으며 기존의 방법에 비해 계산 속도가 향상되어 실시간 처리의 가능성을 제시하였다.

  • PDF

Cursor Moving by Voice Command using DTW method (DTW방식을 이용한 음성 명령에 의한 커서 조작)

  • 추명경;손영선
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.1
    • /
    • pp.82-87
    • /
    • 2001
  • 본 논문에서는 마우스 대신에 음성으로 명령을 입력하여 퍼지 추론을 통해 위도우 화면상의 커서를 이동시키는 인터페이스를 구현하였다. 입력된 음성이 대체로 짧은 언어이기에 이를 인식하기 위하여 고립단어 인식에 강한 DTW방식을 사용하였다. DTW방식의 단점중인 하나가 음성길이가 비슷한 명령을 입력하였을 때 표준패턴 중 오차 값이 가장 작은 패턴으로 인식하는 것이다. 예를 들면 \"아주 많이 이동해\"하는 음성이 입력되었을 때 비슷한 음성길이를 가진 \"아주 많이 오른쪽\"으로 인식하는 경우가 있다. 이런 오류를 해결하고자 각 패턴의 DTW오차 거리 값과 표준 패턴의 음성길이를 기준으로 임계값을 퍼지 추론하여 명령으로서의 수락 여부를 결정하였다. 판단이 애매한 부분은 사용자에게 질의를 하여 응답에 따라 수락 여부를 결정하였다.

  • PDF

Searching for Spatio-Temporal Pattern in EEG Signal with Hypernetwork (하이퍼네트워크를 이용한 EEG 신호의 시공간적 패턴 탐색)

  • Kim, Eun-Sol;Lee, Chung-Yeon;Lee, Ki-Seok Kevin;Lee, Hyun-Min;Kim, Joon-Shik;Zhang, Byoung-Tak
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06c
    • /
    • pp.331-334
    • /
    • 2011
  • 입력 데이터의 공통적인 특징을 찾아내는 방법은 기계 학습 분야의 중요한 분야이다. 일반적으로 입력 데이터의 형태적 패턴을 찾아내는 알고리즘들이 많이 연구되었는데, 최근에는 데이터의 입력 순서 또는 데이터 사이의 시간적 인과 관계와 같이 시간에 연관된 패턴을 찾는 방법이 주목을 받고 있다. 우리는 형태적 혹은 공간적 패턴 탐색에 뛰어난 성능을 보이는 하이퍼네트워크 모델을 확장하여 입력 데이터의 시공간적 패턴을 찾는 방법을 제시한다. 하이퍼네트워크는 두 개 이상의 변수를 하나의 엣지로 연결하여 문제공간을 탐색하는 모델로, 시간과 공간의 변수를 동시에 고려하여 데이터의 특성을 찾아내는 데에 적합하다. 이를 확인하기 위하여 사람의 EEG 신호를 분석하였는데, 시각적인 정보를 처리할 때와 언어적 정보를 처리할 때의 특징적인 패턴들을 찾았다.

Improvement of Pattern Recognition Capacity of the Fuzzy ART with the Variable Learning (가변 학습을 적용한 퍼지 ART 신경망의 패턴 인식 능력 향상)

  • Lee, Chang Joo;Son, Byounghee;Hong, Hee Sik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38B no.12
    • /
    • pp.954-961
    • /
    • 2013
  • In this paper, we propose a new learning method using a variable learning to improve pattern recognition in the FCSR(Fast Commit Slow Recode) learning method of the Fuzzy ART. Traditional learning methods have used a fixed learning rate in updating weight vector(representative pattern). In the traditional method, the weight vector will be updated with a fixed learning rate regardless of the degree of similarity of the input pattern and the representative pattern in the category. In this case, the updated weight vector is greatly influenced from the input pattern where it is on the boundary of the category. Thus, in noisy environments, this method has a problem in increasing unnecessary categories and reducing pattern recognition capacity. In the proposed method, the lower similarity between the representative pattern and input pattern is, the lower input pattern contributes for updating weight vector. As a result, this results in suppressing the unnecessary category proliferation and improving pattern recognition capacity of the Fuzzy ART in noisy environments.

The Development of the User-Customizable Favorites-based Smart Phone UX/UI Using Tap Pattern Similarity (탭 패턴 유사도를 이용한 사용자 맞춤형 즐겨찾기 스마트 폰 UX/UI개발)

  • Kim, Yeongbin;Kwak, Moon-Sang;Kim, Euhee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.8
    • /
    • pp.95-106
    • /
    • 2014
  • In this paper, we design a smart phone UX/UI and a tap pattern recognition algorithm that can recognize tap patterns from a tapping user's fingers on the screen, and implement an application that provides user-customizable smart phones's services from the tap patterns. A user can generate a pattern by tapping the input pad several times and register it by using a smart phone's favorite program. More specifically, when the user inputs a tap pattern on the input pad, the proposed application searches a stored similar tap pattern and can run a service registered on it by measuring tap pattern similarity. Our experimental results show that the proposed method helps to guarantee the higher recognition rate and shorter input time for a variety of tap patterns.

Call Admission Control in ATM by Neural Networks and Fuzzy Pattern Estimator (신경망과 퍼지 패턴 추정기를 이용한 ATM의 호 수락 제어)

  • Lee, Jin-Lee
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.8
    • /
    • pp.2188-2195
    • /
    • 1999
  • This paper proposes a new call admission control scheme utilizing an inverse fuzzy vector quantizer(IFVQ) and neuralnet, which combines benefits of IFVQ and flexibilities of FCM(Fuzzy-C-Means) arithmetics, to decide whether a requested call not to be trained in learning phase to be connected or not. The system generates the estimated traffic pattern for the cell stream of a new call, using feasible/infeasible patterns in codebook, fuzzy membership values that represent the degree to which each pattern of codebook matches input pattern, and FCM arithmetics. The input to the NN is the vector consisted of traffic parameters which are the means and variances of the number of cells arriving in decision as to whether to accept or reject a new call depends on whether the NN is used for decision threshold(+0.5). This method is a new technique for call admission control using the membership values as traffic parameter which declared to CAC at the call set up stage, and this is valid for a very general traffic model in which the calls of a stream can belong to an unlimited number of traffic classes. Through the simulations, it is founded the performance of the suggested method outperforms compared to the conventional NN method.

  • PDF