본 논문에서는 뉴로-퍼지 방법을 이용한 한방 맥진 및 양도락 진단 알고리즘을 제안하고 DSP보드를 중심으로 한 실시간 진단 시스템을 구현한다. 맥진은 환자의 손목에 있는 촌관척부에 부착한 맥진 Probe를 통해 맥진카드의 3 채널로 신호가 입력되도록 하여, 1차적으로 좌부맥, 좌침맥, 우부맥, 우침맥으로 나누어 촌관척 3부분을 동시에 실험하고, 2차적으로는 촌관척 중 1부분씩 개별적으로도 실험을 행할 수 있도록 한다. 실제 실험을 통하여 어느 맥진 Probe로도 맥진 신호가 세밀하게 검출됨을 확인한다. 양도락 진단에서는 전기자극기에서 발생된 펄스를 인체의 일정부위에 주입하면 12경맥의 대표측정점에 부착된 전극을 통해 응답신호를 검출해 내도록 한다. 실험은 ① 1채널씩 검출, ② 2채널(좌, 우)씩 검출, ③ 6채널(좌수, 우수, 좌족, 우족)씩 4단계로 검출, ④ 24채널 동시 검출 후, 1차적으로 퍼지진단을 행하고, 2차적으로 퍼지진단값을 신경회로망의 입력으로 이용하여 신경회로망 훈련을 행하였다. 그리고 임의의 환자에게서 측정한 검출값을 곧바로 기 훈련 된 양도락 신호의 패턴인식을 행하여 양도락 신호의 뉴로-퍼지 진단이 잘 수행됨을 확인하였다.
유도전동기 구동시스템의 예상치 않은 고장은 많은 산업 응용분야에서 심각한 문제를 초래시킬 수 있으므로, 유도전동기 구동을 위한 전압형 PWM 인버터의 고장진단에 대해 연구한다. 진단의 고려 대상은 정류기 다이오드, 스위칭 장치 및 입력단의 개방회로 고장이며, 진단신호는 전동기 전류로부터 유도한다. 고장의 특징추출은 dq-전류 경로의 크기를 이용하였고, 진단은 PCA와 LDA를 적용한다. 또한, 본 논문에서는 일반적인 중${\cdot}$소형 유도전동기 구동 시스템의 제어기에 진단 소프트웨어를 추가하여 사용하는 것에 대한 가능성을 제시하며, 그에 관련해 수행속도에 따른 진단결과들을 보여준다. 최종적으로, MATLAB을 이용하여 인버터의 고장진단에 대한 모의실험을 수행 하였고, 제안된 알고리즘의 유용성을 검증하였다.
본 연구는 CCD카메라로부터 입력된 영상을 분석하여 특징값을 추출하고, 패턴인식기술을 이용하여 화재연기영상을 감지하는 방법을 제안한다. 우선 CCD카메라로부터 획득된 영상들간의 차영상을 이용하여 움직임 영역만을 검출하고, 이후 연기색상모델을 적용하여 후보영역을 생성한다. 연기영역은 유사색상의 군집화를 이루고, 주변에 비해 단순한 질감을 가지며, 시간에 따른 모션정보의 상승 방향성을 가지는 특징을 가진다. 본 논문에서는 연기영역의 이러한 특성을 이용하여 학습영상으로부터 연기의 밝기, 웨이블릿 고주파 성분, 모션 벡터 등의 특징 값을 추출하고 이들 특징 값들에 대해 가우시안 확률 모델을 생성한다. 이렇게 추출된 확률모델은 연기영역의 시간적 연속성을 고려하기 위해 본 논문에서 새롭게 구성한 동적 베이지안 네트워크의 관찰노드에 적용된다. 본 논문에서 제안하는 방법은 산불을 비롯한 다양한 연기를 감지하였으며, 기존의 알고리즘에 비해 우수한 성능을 보여주었다.
자기조직화 지도(SOM)은 T. 코호넨의 주도하에 개발된 비지도 학습 신경망 모형이다. 그 동안 패턴인식과 문서검색 분야에 주로 응용되어 왔기 때문에 통계학 분야에서는 덜 알려졌으나, 최근 K-평균 군집화에 대한 대안적 데이터 마이닝 기법으로 활용되기 시작하였다. 본 연구에서는 SOM의 한 버전인 PC-SOM(주성분 자기조직화 지도)을 제안하고 활용 예를 제시하고자 한다. PC-SOM은 1차원적 SOM 알고리즘을 반복 수행하여 2차원, 3차원 등의 SOM을 얻는 방법이기 때문에 기존 SOM과는 달리 사전 Map의 크기를 확정할 필요가 없다. 또한, 기존 SOM에 비하여 향상된 시각화를 가능하게 한다.
서포트 벡터 머신(Support Vector Machine, SVM)은 학습용 데이터 집합이 확보되어 있을 경우, 매우 강력한 분류 알고리즘이다. 따라서 패턴인식은 물론 기계학습 분야에서 결함진단 도구의 하나로 이용되고 있다. 본 논문에서는 최적 특징과 SVM 을 이용하여 볼 베어링의 결함유형과 결함의 정도를 진단한 결과를 기술하였다. SVM 학습용 특징데이터에는 12 개의 시간영역 특징과 9 개의 주파수영역 특징들이 포함되어 있으며 이들 특징들은 다양한 베어링 결함조건에서 측정된 진동신호와 진동신호의 이산 웨이블렛 변환신호로부터 추출되었다.
디지털 트랜스포메이션은 가상과 현실간의 상호작용을 혁신하는 것이다. 이 과정에서 발생하는 복잡한 문제를 해결해야 하고, 그 방법 중 하나가 컴퓨팅 사고력이다. 따라서 본 연구는 대학에서 교양교육으로 언플러그드를 이용한 소프트웨어 교육이 컴퓨팅 사고력을 향상시키는데 효과가 있는지 살펴보는 것을 목표로 한다. 그 방법으로 전체 학년을 대상으로 한 교양 소프트웨어 수업에 컴퓨팅 사고 5개 요소를 추출한 후 언플러그드를 적용하여 수업을 진행하였다. 한 학기 16차시 수업을 진행하였고 설문지를 통해 컴퓨터 사고력 향상을 측정하였다. 그 결과 수업 이후 수강생의 컴퓨팅 사고력이 전반적으로 증가하였다. 관찰조사에서는 전 학문분야에서 컴퓨팅 사고력 요소 중 추상화 요소를 개념화하는데 어려움을 느꼈으며, 예·체능은 알고리즘 요소를, 인문학은 패턴인식 요소를 개념화하는데 더 어려움을 느꼈다. 향후 각 요소를 학문영역별로 다양한 내용의 콘텐츠를 개발하여 학습자에게 이해를 돕는 것이 필요하다.
In this paper, we design a hybrid system for recognition and tracking realized with the aid of polynomial based RBFNNs pattern classifier and particle filter. The RBFNN classifier is built by learning the training data for diverse pose images. The optimized parameters of RBFNN classifier are obtained by Particle Swarm Optimization(PSO). Testing data for pose image is used as a face image obtained under real situation, where the face image is detected by AdaBoost algorithm. In order to improve the recognition performance for a detected image, pose estimation as preprocessing step is carried out before the face recognition step. PCA is used for pose estimation, the pose of detected image is assigned for the built pose by considering the featured difference between the previously built pose image and the newly detected image. The recognition of detected image is performed through polynomial based RBFNN pattern classifier, and if the detected image is equal to target for tracking, the target will be traced by particle filter in real time. Moreover, when tracking is failed by PF, Adaboost algorithm detects facial area again, and the procedures of both the pose estimation and the image recognition are repeated as mentioned above. Finally, experimental results are compared and analyzed by using Honda/UCSD data known as benchmark DB.
본 논문에서는 3상 유도전동기의 고장진단을 수행하기 위해 패턴인식에 기반을 둔 진단 알고리즘을 제안한다. 실험 장치는 유도전동기 구동의 기계적 모듈과 고장신호를 구하기 위한 데이터 획득 모듈로 구성하였다. 진단 절차를 위한 첫 번째 단계로서 전처리 과정은 획득한 전류를 단순화하고 정규화 하는 것을 수행한다. 데이터의 단순화 과정은 3상전류를 Concrodia 벡터의 크기로 변환하는 것을 적용한다. 다음으로 특징 추출 단계를 커널 주성분 분석과 선형판별분석으로 수행하며, 마지막으로, 분류기는 방사기저함수 네트워크를 사용한다. 다양한 부하에 대하여 몇몇의 전기적 고장과 기계적 고장 하에서 획득한 데이터를 이용하여 제안된 방법의 타당성을 검증한다.
일반적인 카메라와 다르게 초당 매우 많은 개수의 프레임을 캡처할 수 있는 기능을 가진 고속의 카메라는 그동안 제한적이었던 일부의 영상 처리 기술들의 고도화를 가능하게 할 수 있다. 본 논문에서는 입력되는 초고속의 컬러 영상으로부터 잡음을 제거한 다음, 잡음이 제거된 영상으로부터 사람의 얼굴 영역을 검출하는 방법을 제시한다. 본 논문에서는 우선 입력되는 초고속의 영상 안에 포함된 잡음 화소들을 양방향의 필터를 적용하여 효과적으로 제거한다. 그런 다음, 레티나 얼굴 모델을 사용하여 잡음이 제거된 영상으로부터 사람의 개인 정보를 대표적으로 나타내는 얼굴 영역을 강인하게 검출한다. 실험 결과에서는 본 논문에서 제시한 알고리즘이 입력되는 컬러 영상으로부터 잡음을 제거한 다음, 생성된 모델을 사용하여 사람의 얼굴 영역을 강인하게 검출한다는 것을 보여준다. 본 논문에서 제시된 모델 기반의 얼굴 영역검출 방법은 실내외 건물의 모니터링, 출입문 개폐 관리, 그리고 모바일 생체 인증과 같은 영상처리 및 패턴 인식과 관련된 실제적인 많은 응용 분야의 기초 기술로 사용될 것으로 예상된다.
이미지 인식 및 패턴 감지를 위해 널리 사용되는 알고리즘 중 하나는 convolution neural network(CNN)이다. CNN에서 대부분의 연산량을 차지하는 convolution 연산을 효율적으로 처리하기 위해 외부 하드웨어 가속기를 사용하여 CNN 어플리케이션의 성능을 향상 시킬 수 있다. 이러한 하드웨어 가속기를 사용함에 있어서 CNN은 막대한 연산량을 처리하기 위해 오프칩 DRAM에서 가속기 내부의 메모리로 데이터를 갖고 와야 한다. 즉 오프칩 DRAM과 가속기 내부의 온칩 메모리 혹은 글로벌 버퍼 사이의 데이터 통신이 CNN 어플리케이션의 성능에 큰 영향을 끼친다. 본 논문에서는 CNN 가속기 내의 온칩 메모리 혹은 글로벌 버퍼의 크기에 따른 주메모리 혹은 DRAM으로의 접근 횟수를 추산할 수 있는 시뮬레이터를 개발하였다. CNN 아키텍처 중 하나인 AlexNet에서, CNN 가속기 내부의 글로벌 버퍼의 크기를 증가시키면서 시뮬레이션 했을 때, 글로벌 버퍼 크기가 100kB 이상인 경우가 100kB 미만인 경우보다 가속기 내부와 오프칩 DRAM 간의 접근 횟수가 0.8배 낮은 것을 확인 했다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.