• Title/Summary/Keyword: 패턴셋

Search Result 114, Processing Time 0.021 seconds

Anomaly Detection Methodology Based on Multimodal Deep Learning (멀티모달 딥 러닝 기반 이상 상황 탐지 방법론)

  • Lee, DongHoon;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.2
    • /
    • pp.101-125
    • /
    • 2022
  • Recently, with the development of computing technology and the improvement of the cloud environment, deep learning technology has developed, and attempts to apply deep learning to various fields are increasing. A typical example is anomaly detection, which is a technique for identifying values or patterns that deviate from normal data. Among the representative types of anomaly detection, it is very difficult to detect a contextual anomaly that requires understanding of the overall situation. In general, detection of anomalies in image data is performed using a pre-trained model trained on large data. However, since this pre-trained model was created by focusing on object classification of images, there is a limit to be applied to anomaly detection that needs to understand complex situations created by various objects. Therefore, in this study, we newly propose a two-step pre-trained model for detecting abnormal situation. Our methodology performs additional learning from image captioning to understand not only mere objects but also the complicated situation created by them. Specifically, the proposed methodology transfers knowledge of the pre-trained model that has learned object classification with ImageNet data to the image captioning model, and uses the caption that describes the situation represented by the image. Afterwards, the weight obtained by learning the situational characteristics through images and captions is extracted and fine-tuning is performed to generate an anomaly detection model. To evaluate the performance of the proposed methodology, an anomaly detection experiment was performed on 400 situational images and the experimental results showed that the proposed methodology was superior in terms of anomaly detection accuracy and F1-score compared to the existing traditional pre-trained model.

Adverse Effects on EEGs and Bio-Signals Coupling on Improving Machine Learning-Based Classification Performances

  • SuJin Bak
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.10
    • /
    • pp.133-153
    • /
    • 2023
  • In this paper, we propose a novel approach to investigating brain-signal measurement technology using Electroencephalography (EEG). Traditionally, researchers have combined EEG signals with bio-signals (BSs) to enhance the classification performance of emotional states. Our objective was to explore the synergistic effects of coupling EEG and BSs, and determine whether the combination of EEG+BS improves the classification accuracy of emotional states compared to using EEG alone or combining EEG with pseudo-random signals (PS) generated arbitrarily by random generators. Employing four feature extraction methods, we examined four combinations: EEG alone, EG+BS, EEG+BS+PS, and EEG+PS, utilizing data from two widely-used open datasets. Emotional states (task versus rest states) were classified using Support Vector Machine (SVM) and Long Short-Term Memory (LSTM) classifiers. Our results revealed that when using the highest accuracy SVM-FFT, the average error rates of EEG+BS were 4.7% and 6.5% higher than those of EEG+PS and EEG alone, respectively. We also conducted a thorough analysis of EEG+BS by combining numerous PSs. The error rate of EEG+BS+PS displayed a V-shaped curve, initially decreasing due to the deep double descent phenomenon, followed by an increase attributed to the curse of dimensionality. Consequently, our findings suggest that the combination of EEG+BS may not always yield promising classification performance.

Comparative Analysis of Self-supervised Deephashing Models for Efficient Image Retrieval System (효율적인 이미지 검색 시스템을 위한 자기 감독 딥해싱 모델의 비교 분석)

  • Kim Soo In;Jeon Young Jin;Lee Sang Bum;Kim Won Gyum
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.12
    • /
    • pp.519-524
    • /
    • 2023
  • In hashing-based image retrieval, the hash code of a manipulated image is different from the original image, making it difficult to search for the same image. This paper proposes and evaluates a self-supervised deephashing model that generates perceptual hash codes from feature information such as texture, shape, and color of images. The comparison models are autoencoder-based variational inference models, but the encoder is designed with a fully connected layer, convolutional neural network, and transformer modules. The proposed model is a variational inference model that includes a SimAM module of extracting geometric patterns and positional relationships within images. The SimAM module can learn latent vectors highlighting objects or local regions through an energy function using the activation values of neurons and surrounding neurons. The proposed method is a representation learning model that can generate low-dimensional latent vectors from high-dimensional input images, and the latent vectors are binarized into distinguishable hash code. From the experimental results on public datasets such as CIFAR-10, ImageNet, and NUS-WIDE, the proposed model is superior to the comparative model and analyzed to have equivalent performance to the supervised learning-based deephashing model. The proposed model can be used in application systems that require low-dimensional representation of images, such as image search or copyright image determination.

A Topic Modeling-based Recommender System Considering Changes in User Preferences (고객 선호 변화를 고려한 토픽 모델링 기반 추천 시스템)

  • Kang, So Young;Kim, Jae Kyeong;Choi, Il Young;Kang, Chang Dong
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.2
    • /
    • pp.43-56
    • /
    • 2020
  • Recommender systems help users make the best choice among various options. Especially, recommender systems play important roles in internet sites as digital information is generated innumerable every second. Many studies on recommender systems have focused on an accurate recommendation. However, there are some problems to overcome in order for the recommendation system to be commercially successful. First, there is a lack of transparency in the recommender system. That is, users cannot know why products are recommended. Second, the recommender system cannot immediately reflect changes in user preferences. That is, although the preference of the user's product changes over time, the recommender system must rebuild the model to reflect the user's preference. Therefore, in this study, we proposed a recommendation methodology using topic modeling and sequential association rule mining to solve these problems from review data. Product reviews provide useful information for recommendations because product reviews include not only rating of the product but also various contents such as user experiences and emotional state. So, reviews imply user preference for the product. So, topic modeling is useful for explaining why items are recommended to users. In addition, sequential association rule mining is useful for identifying changes in user preferences. The proposed methodology is largely divided into two phases. The first phase is to create user profile based on topic modeling. After extracting topics from user reviews on products, user profile on topics is created. The second phase is to recommend products using sequential rules that appear in buying behaviors of users as time passes. The buying behaviors are derived from a change in the topic of each user. A collaborative filtering-based recommendation system was developed as a benchmark system, and we compared the performance of the proposed methodology with that of the collaborative filtering-based recommendation system using Amazon's review dataset. As evaluation metrics, accuracy, recall, precision, and F1 were used. For topic modeling, collapsed Gibbs sampling was conducted. And we extracted 15 topics. Looking at the main topics, topic 1, top 3, topic 4, topic 7, topic 9, topic 13, topic 14 are related to "comedy shows", "high-teen drama series", "crime investigation drama", "horror theme", "British drama", "medical drama", "science fiction drama", respectively. As a result of comparative analysis, the proposed methodology outperformed the collaborative filtering-based recommendation system. From the results, we found that the time just prior to the recommendation was very important for inferring changes in user preference. Therefore, the proposed methodology not only can secure the transparency of the recommender system but also can reflect the user's preferences that change over time. However, the proposed methodology has some limitations. The proposed methodology cannot recommend product elaborately if the number of products included in the topic is large. In addition, the number of sequential patterns is small because the number of topics is too small. Therefore, future research needs to consider these limitations.