• Title/Summary/Keyword: 패턴분류기

Search Result 390, Processing Time 0.051 seconds

조건부 FCM과 방사기저함수네트웍을 이용한 유도전동기 고장 검출 (Detection and Disgnosis of induction motor using Conditional FCM and Radial Basis Function Network)

  • 김승석;김형배;유정웅;전명근
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2004년도 춘계학술대회 학술발표 논문집 제14권 제1호
    • /
    • pp.321-324
    • /
    • 2004
  • 본 논문에서는 유도전동기 고장진단을 위하여 계층적인 하이브리드 뉴럴네트웍을 제안하였다. 시스템의 입출력 데이터에 근거하여 패턴을 분류하고자 할 때 직접적인 분류가 어렵거나 성능이 좋지 않을 경우 적절한 방법을 통하여 변환을 하거나 또는 패턴 분류기의 특성에 맞도록 변환하여 패턴 분류 성능을 향상하는 등 단계별 변환 및 분류 기법을 이용하였다. 제안된 방법에서는 실험에 의해 측정된 전류값을 주기별로 주성분분석(PCA) 기법을 이용하여 입력차원을 축소한 후 이를 조건부 FCM으로 방사기저함수의 초기치를 최적화하여 학습을 하였다. 이는 주성분분석이 가지는 특성을 이용하여 데이터의 특징을 나누었으며 이를 뉴럴네트웍의 학습 기능을 이용하여 모델의 최종 성능을 개선하는 것이다. 각각의 알고리즘이 가지는 특징을 활용하면서도 단점을 계층적으로 보안하여 유도 전동기 고장 진단 성능을 개선하였다. 이를 실제 계측된 유도전동기 데이터를 이용하여 제안된 방법의 유용성을 보이고자 한다.

  • PDF

패턴인식을 이용한 수삼 등급판정 알고리즘에 관한 연구 (A Study on a Ginseng Grade Decision Making Algorithm Using a Pattern Recognition Method)

  • 정석훈;고국원;강제용;장수원;이상준
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제5권7호
    • /
    • pp.327-332
    • /
    • 2016
  • 본 연구는 비 정형 농산물 중 6년근 수삼의 자동 등급 분류하기 위한 선행연구로, 이를 위해 4방향에서 이미지 취득이 가능한 수삼 영상 측정기를 제작 하였으며 총 245 수삼 개체에 대해서 영상을 취득하였다. 취득된 영상의 각 수삼 개체마다 12개의 파라미터를 추출하였으며, KGC 인삼공사의 수삼등급 분류 기준과 각 등급별 평균 파라미터의 분포를 조사하여 최종 4개 파라미터를 선정하였다. 패턴인식 분류기는 Support Vector Machine을 사용하였으며 공용 소프트웨어인 OpenCV Library를 사용하여 k-Class 분류기를 설계하였다. 각 등급별 학습 데이터 수를 10, 15, 20으로 조정하여 등급별 인식률, 본인 거부율, 타인 인식율을 조사하였으며, 학습데이터 수가 10개일 때 1등급 인식률 94%, 2등급 인식률 98%, 3등급 인식률 90%로 가장 높은 인식 성능을 보였다.

재귀 분할 평균 법을 이용한 새로운 메모리기반 추론 알고리즘 (A New Memory-Based Reasoning Algorithm using the Recursive Partition Averaging)

  • 이형일;정태선;윤충화;강경식
    • 한국정보처리학회논문지
    • /
    • 제6권7호
    • /
    • pp.1849-1857
    • /
    • 1999
  • 메모리 기반 추론에서 기억공간의 효율적인 사용과 분류성능의 향상을 위하여, 재귀 분할 평균 기법을 제안하였다. 이 알고리즘은 패턴공간을 구성하는 각 초월 평면이 동일한 클래스소속으로 패턴으로 구성될 때까지 재귀적으로 분할한 후, 초월 평면별로 소속된 패턴들의 평균값을 계산하여 대표패턴을 추출한다. 또한 각 특징과 클래스간의 상호정보를 특징의 가중치로 사용하여 분류 성능의 향상을 시도하였다. 제안된 알고리즘은 k-NN(k-Nearest Neighbors) 분류기에서 필요로 하는 메모리 공간의 30~90%만을 사용하며, 분류에 있어서도 k-NN과 유사한 인식 성능을 보이고 있다. 또한 저장된 패턴 개수의 감소로 인하여, 실제 분류에 소요되는 시간에 있어서도 k-NN보다 월등히 우수한 성능을 보이고 있다.

  • PDF

Dynamic Time Warping(DTW)기법을 이용한 가전기기별 부하 패턴 분류 기초연구 (Preliminary Study on Appliance Load Disaggregation Using Dynamic Time Warping Method)

  • 장민석;공성배;고락경;정주영;주성관
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2015년도 제46회 하계학술대회
    • /
    • pp.45-46
    • /
    • 2015
  • 가전기기별 에너지 사용정보를 제공함으로써 가정에서 효율적인 에너지 사용을 유도할 수 있다. 가전기기별 사용정보를 효과적으로 제공하기 위해서는 NILM (Non-Intrusive Load Monitoring) 기법이 필요하다.본 논문에서는 개별 가전기기 분류단계에서 쓰이는 DTW(Dynamic Time Warping) 기법을 소개한다. DTW 기법은 다른 두 시계열 데이턴간의 유사도를 측정하는 패턴인식 기법 중 하나이다. 이 유사도를 이용하여 가전기기의 동작여부를 판별하고 분류를 수행한다.

  • PDF

빅 데이터 처리를 위한 증분형 FCM 기반 RBF Neural Networks 패턴 분류기 설계 (Design of Incremental FCM-based RBF Neural Networks Pattern Classifier for Processing Big Data)

  • 이승철;오성권;노석범
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2015년도 제46회 하계학술대회
    • /
    • pp.1343-1344
    • /
    • 2015
  • 본 연구에서는 증분형 FCM(Incremental Fuzzy C-Means: Incremental FCM) 클러스터링 알고리즘을 기반으로 방사형 기저함수 신경회로망(Radial Basis Function Neural Networks: RBFNN) 패턴 분류기를 설계한다. 방사형 기저함수 신경회로망은 조건부에서 가우시안 함수 또는 FCM을 사용하여 적합도를 구하였지만, 제안된 분류기에서는 빅 데이터간의 적합도를 구하기 위해 증분형 FCM을 사용한다. 또한, 빅 데이터를 학습하기 위해 결론부에서 재귀최소자승법(Recursive Least Square Estimation: RLSE)을 사용하여 다항식 계수를 추정한다. 마지막으로 추론부에서는 증분형 FCM에서 구한 적합도와 재귀최소자승법으로 구한 다항식을 이용하여 최종 출력을 구한다.

  • PDF

개선된 휴리스틱 규칙 및 의사 결정 트리 분석을 이용한 P2P 트래픽 분류 기법 (P2P Traffic Classification using Advanced Heuristic Rules and Analysis of Decision Tree Algorithms)

  • 예우지엔;조경산
    • 한국컴퓨터정보학회논문지
    • /
    • 제19권3호
    • /
    • pp.45-54
    • /
    • 2014
  • 본 논문에서는 기존 기법들의 제한점을 개선하기 위해 휴리스틱 규칙 및 기계학습 분석 결과를 이용한 두 단계의 P2P 트래픽 분류 기법을 제안한다. 첫 번째 단계는 패킷 레벨의 시그니처 기반 분류기이고, 두 번째 단계는 플로우 레벨에서 수행되는 패턴 휴리스틱 규칙 및 통계 기반 분류기이다. 제안된 패턴 휴리스틱 규칙은 분류의 정확도를 높이고 통계 기반 분류기가 처리할 트래픽의 양을 줄일 수 있다. 다양한 의사 결정 트리 알고리즘의 분석을 기반으로 통계 기반 분류기는 가장 효율적인 REPTree로 구현하고, 앙상블 알고리즘을 통해 통계 기반 분류기의 성능을 개선한다. 실제 환경의 데이터 집합을 이용한 검증 분석을 통해, 본 제안 기법이 기존 기법에 비해 높은 정확도와 낮은 과부하를 제공함을 제시한다.

차분 진화 알고리즘 기반 방사형 기저 함수 신경회로망 분류기의 최적화 방법 (Optimization Method of Differential Evolution-based Radial Basis Function Neural Networks)

  • 마창민;오성권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2011년도 제42회 하계학술대회
    • /
    • pp.1962-1963
    • /
    • 2011
  • 본 연구에서는 패턴분류를 위해 최적화된 방사형 기저 함수 신경회로망(Radial Basis Function Neural Networks) 분류기를 제안한다. RBFNN은 입력층, 은닉층, 출력층의 3층 구조로 되어 있으며 Multi Dimension, Predictive ability, Robustness한 특징이 있다. RBFNN의 은닉층에는 기존의 활성함수가 아닌 Fuzzy C-means 클러스터링 알고리즘을 사용하여 입력 데이터의 특성을 고려한 적합도를 사용하였다. RBFNN은 은닉층의 노드수와 FCM 클러스터링의 퍼지화 계수, 연결가중치의 다항식 타입이 모델의 성능의 향상에 영향을 미치기 때문에 최적화가 필요하며 본 논문에서는 Differential Evolution(DE) 알고리즘을 사용하여 모델의 구조 및 파라미터를 최적화시켜 모델의 성능을 향상시켰다. 제안된 모델을 평가하기 위해 패턴분류에 많이 사용되는 Iris 데이터와 Wine 데이터를 이용하였다.

  • PDF

퍼지 분류기를 위한 통계적 정보 기반의 퍼지 함수 설정 기법 (Creation Methods of Fuzzy Membership Functions Based on Statistical Information for Fuzzy Classifier)

  • 신상호;한수환;우영운
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2009년도 춘계학술대회
    • /
    • pp.379-382
    • /
    • 2009
  • 패턴 인식에서 분류기 모형으로 많이 사용되는 퍼지 분류기는 퍼지 소속 함수를 적절히 설정함으로써 보다 향상된 분류 성능을 얻을 수 있다는 장점이 있다. 그러나 일반적으로 함수 설정은 인식문제 분야의 특성이나 해당 전문가의 지식과 주관적 경험을 기반으로 설정되므로 설정된 소속도 함수의 일관성과 객관성을 보장하기가 어려운 문제점을 갖고 있다. 따라서 이 논문에서는 퍼지 분류기의 소속도 함수를 설정하기 위한 객관적 기준을 제시하기 위하여 특징값들 간의 통계적 정보를 이용한 소속도 함수 설정 기법들을 제안하였다. 제안한 기법들을 이용하여 UCI machine learning repository 사이트에서 제공되는 표준 데이터 중에 Iris 데이터 세트를 이용하여 실험하고 그 결과를 비교, 분석하였다.

  • PDF

객체의 분류를 위한 효율적인 다층퍼셉트론의 설계 및 구조에 관한 연구 (A Study on the design and Structure of Multi-Layer Perceptron for Effective Classifying Objects)

  • 이용규;고형일;이일병
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2014년도 추계학술발표대회
    • /
    • pp.803-805
    • /
    • 2014
  • 다층 퍼셉트론 분류기는 그 패턴 분류 성능이 훌륭하여 오랜 기간 동안 여러 응용분야에서 사용되어 왔다. 그러나 다른 분류기보다 학습시간이 오래 소요된다는 점이 문제로 지적받아 왔다. 따라서 본 논문은 회전하는 객체의 분류를 위하여 다층 퍼셉트론의 학습시간을 줄이는 효율적인 신경망 시스템을 제안한다. 주성분 분석법을 이용하여 원 데이터의 정보를 가장 잘 잘 나타내도록 변환한 뒤, 그 결과를 다층 퍼셉트론 분류기의 입력으로 사용하였다. 제안하는 시스템은 기존 다층 퍼셉트론 분류기와 비교하였을 때 학습시간을 줄이면서 좀 더 높은 인식률을 보였다.

다중 신경망을 이용한 영상 분류기에 관한 연구 (A Study on an Image Classifier using Multi-Neural Networks)

  • 박수봉;박종안
    • 한국음향학회지
    • /
    • 제14권1호
    • /
    • pp.13-21
    • /
    • 1995
  • 본 논문에서는 신경망 학습에 의한 영상분류 알고리즘을 개선하였으며, 이것은 입력패턴 생성부와 분류을 위한 역전파 알고리즘에 의한 광역신경망으로 구성된다. 입력패턴을 위한 특징값으로는 자기조직화 형상지도 학습에 의해 얻은 코드북 데이타를 특징벡터로 이용한다. 이것은 입력벡터로서 원영상에 충실하면서 입력 뉴런수를 감소시킨다. 분류기에 사용된 광역망 알고리즘은 가중치와 유니트 오프셋 제어가 가능하도록 역전파 알고리즘에 제어부와 어드레스 메모리부를 삽입하였다. 실험결과 이들 분류기는 학습시 국소최소점에 빠지지 않게 되며, 대규모 신경망을 구현하고자 할 때 망구조를 간단히 할 수 있다. 또한 이것은 동작속도를 크게 개선할 수 있다.

  • PDF