본 논문에서는 유도전동기 고장진단을 위하여 계층적인 하이브리드 뉴럴네트웍을 제안하였다. 시스템의 입출력 데이터에 근거하여 패턴을 분류하고자 할 때 직접적인 분류가 어렵거나 성능이 좋지 않을 경우 적절한 방법을 통하여 변환을 하거나 또는 패턴 분류기의 특성에 맞도록 변환하여 패턴 분류 성능을 향상하는 등 단계별 변환 및 분류 기법을 이용하였다. 제안된 방법에서는 실험에 의해 측정된 전류값을 주기별로 주성분분석(PCA) 기법을 이용하여 입력차원을 축소한 후 이를 조건부 FCM으로 방사기저함수의 초기치를 최적화하여 학습을 하였다. 이는 주성분분석이 가지는 특성을 이용하여 데이터의 특징을 나누었으며 이를 뉴럴네트웍의 학습 기능을 이용하여 모델의 최종 성능을 개선하는 것이다. 각각의 알고리즘이 가지는 특징을 활용하면서도 단점을 계층적으로 보안하여 유도 전동기 고장 진단 성능을 개선하였다. 이를 실제 계측된 유도전동기 데이터를 이용하여 제안된 방법의 유용성을 보이고자 한다.
본 연구는 비 정형 농산물 중 6년근 수삼의 자동 등급 분류하기 위한 선행연구로, 이를 위해 4방향에서 이미지 취득이 가능한 수삼 영상 측정기를 제작 하였으며 총 245 수삼 개체에 대해서 영상을 취득하였다. 취득된 영상의 각 수삼 개체마다 12개의 파라미터를 추출하였으며, KGC 인삼공사의 수삼등급 분류 기준과 각 등급별 평균 파라미터의 분포를 조사하여 최종 4개 파라미터를 선정하였다. 패턴인식 분류기는 Support Vector Machine을 사용하였으며 공용 소프트웨어인 OpenCV Library를 사용하여 k-Class 분류기를 설계하였다. 각 등급별 학습 데이터 수를 10, 15, 20으로 조정하여 등급별 인식률, 본인 거부율, 타인 인식율을 조사하였으며, 학습데이터 수가 10개일 때 1등급 인식률 94%, 2등급 인식률 98%, 3등급 인식률 90%로 가장 높은 인식 성능을 보였다.
메모리 기반 추론에서 기억공간의 효율적인 사용과 분류성능의 향상을 위하여, 재귀 분할 평균 기법을 제안하였다. 이 알고리즘은 패턴공간을 구성하는 각 초월 평면이 동일한 클래스소속으로 패턴으로 구성될 때까지 재귀적으로 분할한 후, 초월 평면별로 소속된 패턴들의 평균값을 계산하여 대표패턴을 추출한다. 또한 각 특징과 클래스간의 상호정보를 특징의 가중치로 사용하여 분류 성능의 향상을 시도하였다. 제안된 알고리즘은 k-NN(k-Nearest Neighbors) 분류기에서 필요로 하는 메모리 공간의 30~90%만을 사용하며, 분류에 있어서도 k-NN과 유사한 인식 성능을 보이고 있다. 또한 저장된 패턴 개수의 감소로 인하여, 실제 분류에 소요되는 시간에 있어서도 k-NN보다 월등히 우수한 성능을 보이고 있다.
가전기기별 에너지 사용정보를 제공함으로써 가정에서 효율적인 에너지 사용을 유도할 수 있다. 가전기기별 사용정보를 효과적으로 제공하기 위해서는 NILM (Non-Intrusive Load Monitoring) 기법이 필요하다.본 논문에서는 개별 가전기기 분류단계에서 쓰이는 DTW(Dynamic Time Warping) 기법을 소개한다. DTW 기법은 다른 두 시계열 데이턴간의 유사도를 측정하는 패턴인식 기법 중 하나이다. 이 유사도를 이용하여 가전기기의 동작여부를 판별하고 분류를 수행한다.
본 연구에서는 증분형 FCM(Incremental Fuzzy C-Means: Incremental FCM) 클러스터링 알고리즘을 기반으로 방사형 기저함수 신경회로망(Radial Basis Function Neural Networks: RBFNN) 패턴 분류기를 설계한다. 방사형 기저함수 신경회로망은 조건부에서 가우시안 함수 또는 FCM을 사용하여 적합도를 구하였지만, 제안된 분류기에서는 빅 데이터간의 적합도를 구하기 위해 증분형 FCM을 사용한다. 또한, 빅 데이터를 학습하기 위해 결론부에서 재귀최소자승법(Recursive Least Square Estimation: RLSE)을 사용하여 다항식 계수를 추정한다. 마지막으로 추론부에서는 증분형 FCM에서 구한 적합도와 재귀최소자승법으로 구한 다항식을 이용하여 최종 출력을 구한다.
본 논문에서는 기존 기법들의 제한점을 개선하기 위해 휴리스틱 규칙 및 기계학습 분석 결과를 이용한 두 단계의 P2P 트래픽 분류 기법을 제안한다. 첫 번째 단계는 패킷 레벨의 시그니처 기반 분류기이고, 두 번째 단계는 플로우 레벨에서 수행되는 패턴 휴리스틱 규칙 및 통계 기반 분류기이다. 제안된 패턴 휴리스틱 규칙은 분류의 정확도를 높이고 통계 기반 분류기가 처리할 트래픽의 양을 줄일 수 있다. 다양한 의사 결정 트리 알고리즘의 분석을 기반으로 통계 기반 분류기는 가장 효율적인 REPTree로 구현하고, 앙상블 알고리즘을 통해 통계 기반 분류기의 성능을 개선한다. 실제 환경의 데이터 집합을 이용한 검증 분석을 통해, 본 제안 기법이 기존 기법에 비해 높은 정확도와 낮은 과부하를 제공함을 제시한다.
본 연구에서는 패턴분류를 위해 최적화된 방사형 기저 함수 신경회로망(Radial Basis Function Neural Networks) 분류기를 제안한다. RBFNN은 입력층, 은닉층, 출력층의 3층 구조로 되어 있으며 Multi Dimension, Predictive ability, Robustness한 특징이 있다. RBFNN의 은닉층에는 기존의 활성함수가 아닌 Fuzzy C-means 클러스터링 알고리즘을 사용하여 입력 데이터의 특성을 고려한 적합도를 사용하였다. RBFNN은 은닉층의 노드수와 FCM 클러스터링의 퍼지화 계수, 연결가중치의 다항식 타입이 모델의 성능의 향상에 영향을 미치기 때문에 최적화가 필요하며 본 논문에서는 Differential Evolution(DE) 알고리즘을 사용하여 모델의 구조 및 파라미터를 최적화시켜 모델의 성능을 향상시켰다. 제안된 모델을 평가하기 위해 패턴분류에 많이 사용되는 Iris 데이터와 Wine 데이터를 이용하였다.
패턴 인식에서 분류기 모형으로 많이 사용되는 퍼지 분류기는 퍼지 소속 함수를 적절히 설정함으로써 보다 향상된 분류 성능을 얻을 수 있다는 장점이 있다. 그러나 일반적으로 함수 설정은 인식문제 분야의 특성이나 해당 전문가의 지식과 주관적 경험을 기반으로 설정되므로 설정된 소속도 함수의 일관성과 객관성을 보장하기가 어려운 문제점을 갖고 있다. 따라서 이 논문에서는 퍼지 분류기의 소속도 함수를 설정하기 위한 객관적 기준을 제시하기 위하여 특징값들 간의 통계적 정보를 이용한 소속도 함수 설정 기법들을 제안하였다. 제안한 기법들을 이용하여 UCI machine learning repository 사이트에서 제공되는 표준 데이터 중에 Iris 데이터 세트를 이용하여 실험하고 그 결과를 비교, 분석하였다.
다층 퍼셉트론 분류기는 그 패턴 분류 성능이 훌륭하여 오랜 기간 동안 여러 응용분야에서 사용되어 왔다. 그러나 다른 분류기보다 학습시간이 오래 소요된다는 점이 문제로 지적받아 왔다. 따라서 본 논문은 회전하는 객체의 분류를 위하여 다층 퍼셉트론의 학습시간을 줄이는 효율적인 신경망 시스템을 제안한다. 주성분 분석법을 이용하여 원 데이터의 정보를 가장 잘 잘 나타내도록 변환한 뒤, 그 결과를 다층 퍼셉트론 분류기의 입력으로 사용하였다. 제안하는 시스템은 기존 다층 퍼셉트론 분류기와 비교하였을 때 학습시간을 줄이면서 좀 더 높은 인식률을 보였다.
본 논문에서는 신경망 학습에 의한 영상분류 알고리즘을 개선하였으며, 이것은 입력패턴 생성부와 분류을 위한 역전파 알고리즘에 의한 광역신경망으로 구성된다. 입력패턴을 위한 특징값으로는 자기조직화 형상지도 학습에 의해 얻은 코드북 데이타를 특징벡터로 이용한다. 이것은 입력벡터로서 원영상에 충실하면서 입력 뉴런수를 감소시킨다. 분류기에 사용된 광역망 알고리즘은 가중치와 유니트 오프셋 제어가 가능하도록 역전파 알고리즘에 제어부와 어드레스 메모리부를 삽입하였다. 실험결과 이들 분류기는 학습시 국소최소점에 빠지지 않게 되며, 대규모 신경망을 구현하고자 할 때 망구조를 간단히 할 수 있다. 또한 이것은 동작속도를 크게 개선할 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.