• Title/Summary/Keyword: 패턴분류기

Search Result 390, Processing Time 0.032 seconds

Feature Extraction and Classification of High Dimensional Biomedical Spectral Data (고차원을 갖는 생체 스펙트럼 데이터의 특징추출 및 분류기법)

  • Cho, Jae-Hoon;Park, Jin-Il;Lee, Dae-Jong;Chun, Myung-Geun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.3
    • /
    • pp.297-303
    • /
    • 2009
  • In this paper, we propose the biomedical spectral pattern classification techniques by the fusion scheme based on the SpPCA and MLP in extended feature space. A conventional PCA technique for the dimension reduction has the problem that it can't find an optimal transformation matrix if the property of input data is nonlinear. To overcome this drawback, we extract features by the SpPCA technique in extended space which use the local patterns rather than whole patterns. In the classification step, individual classifier based on MLP calculates the similarity of each class for local features. Finally, biomedical spectral patterns is classified by the fusion scheme to effectively combine the individual information. As the simulation results to verify the effectiveness, the proposed method showed more improved classification results than conventional methods.

Application of Artificial Neural Networks Technique for the Improvement of Flood Forecasting and Warning System (홍수 예.경보시스템 개선을 위한 인공신경망 이론의 적용)

  • Park, Sung-Chun;Kim, Yong-Gu;Jeong, Choen-Lee;Jin, Young-Hoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.1265-1271
    • /
    • 2009
  • 본 연구에서는 강우의 시 공간적 분포의 불규칙한 변동성을 고려한 강우-유출예측모형을 위해 인공신경망(Artificial Neural Networks: ANNs)의 기법의 일종인 자기조직화(Self Organizing Map: SOM) 이론과 역전파 학습 알고리즘(Back Propagation Algorithm: BPA) 이론을 복합적으로 이용하였다. 기존의 인공신경망 연구에서 야기된 저 갈수기의 유출량에 대한 과대평가, 홍수기의 유출량에 대한 과소평가, 예측값이 연속적으로 선행 유출량을 나타내는 Persistence 현상을 해결하기 위하여 패턴분류 성능을 지닌 SOM 이론을 예측모형의 전처리 과정으로 이용하였다. 먼저, 본 연구에서 제안한 방법은 SOM에 의해 강우-유출 관계를 분류하고, SOM에 의한 분류에 따라 각각의 모형을 구성한다. 개별적으로 구축된 모형은 유출량의 예측을 위해 각각의 양상에 따라 분류된 자료를 이용한다. 결과적으로 본 연구에서 제안한 방법은 과거의 인공신경망의 일반적인 적용에 의한 결과보다 더 나은 예측능력을 보여주었으며, 더불어 유출량의 과소 및 과대추정과 Persistence 현상과 같은 문제점이 나타나지 않았다. 또한 강우량 및 유출량의 범위에 제한을 받지 않는 강우-유출예측 모형의 개발 및 홍수기로부터 갈수기까지의 보다 넓은 범위의 유출량의 예측에 기여할 것으로 기대된다.

  • PDF

패턴인식을 위한 Off-Axis SDF Filter Off-Zxis SDF Filter for Pattern Classification

  • 임종태
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 1991.06a
    • /
    • pp.181-184
    • /
    • 1991
  • 본 논문에서는 off-axis 평면 기준파의 각분할(angular multiflexing) 방식과 pseudo-inverse 알고리듬에 의한 SDF 필터를 결합하여 상관기를 구성하고 상관면에서의 상관반응을 관측하여, off-axis SDF 필터가 유형분류에 유용함을 입증하고, 광상관기로의 적용가능성을 보여주고자 한다.

  • PDF

마이크로 컴퓨터의 시험및 신뢰성

  • 임제탁
    • 전기의세계
    • /
    • v.28 no.6
    • /
    • pp.3-10
    • /
    • 1979
  • 여기서는 마이크로컴퓨터의 시험법에 관해서 현재시판되고 있는 시험기와 함께 소개하고 단일 칩마이크로컴퓨터에 관해서 실시하고 있는 시험 패턴 설계예를 약간 상세히 기술한다. 또 마이크로컴퓨터용 LSI의 고장모우드, 고장메카니즘의 분류및 고장율, 신뢰성의 현장과 문제점에 관해서 기술함과 동시에 초기불량을 제거하여 신뢰성을 향상시키는 수단으로서의 스크리닝(screening)및 신뢰도예측에 관해서 소개하고 현장에 있어서의 문제점과 대책에 관해서 논의한다.

  • PDF

Stock Price Direction Prediction Using Convolutional Neural Network: Emphasis on Correlation Feature Selection (합성곱 신경망을 이용한 주가방향 예측: 상관관계 속성선택 방법을 중심으로)

  • Kyun Sun Eo;Kun Chang Lee
    • Information Systems Review
    • /
    • v.22 no.4
    • /
    • pp.21-39
    • /
    • 2020
  • Recently, deep learning has shown high performance in various applications such as pattern analysis and image classification. Especially known as a difficult task in the field of machine learning research, stock market forecasting is an area where the effectiveness of deep learning techniques is being verified by many researchers. This study proposed a deep learning Convolutional Neural Network (CNN) model to predict the direction of stock prices. We then used the feature selection method to improve the performance of the model. We compared the performance of machine learning classifiers against CNN. The classifiers used in this study are as follows: Logistic Regression, Decision Tree, Neural Network, Support Vector Machine, Adaboost, Bagging, and Random Forest. The results of this study confirmed that the CNN showed higher performancecompared with other classifiers in the case of feature selection. The results show that the CNN model effectively predicted the stock price direction by analyzing the embedded values of the financial data

Design of Meteorological Radar Pattern Classifier Using Clustering-based RBFNNs : Comparative Studies and Analysis (클러스터링 기반 RBFNNs를 이용한 기상레이더 패턴분류기 설계 : 비교 연구 및 해석)

  • Choi, Woo-Yong;Oh, Sung-Kwun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.5
    • /
    • pp.536-541
    • /
    • 2014
  • Data through meteorological radar includes ground echo, sea-clutter echo, anomalous propagation echo, clear echo and so on. Each echo is a kind of non-precipitation echoes and the characteristic of individual echoes is analyzed in order to identify with non-precipitation. Meteorological radar data is analyzed through pre-processing procedure because the data is given as big data. In this study, echo pattern classifier is designed to distinguish non-precipitation echoes from precipitation echo in meteorological radar data using RBFNNs and echo judgement module. Output performance is compared and analyzed by using both HCM clustering-based RBFNNs and FCM clustering-based RBFNNs.

A Wavelet-Based EMG Pattern Recognition with Nonlinear Feature Projection (비선형 특징투영 기법을 이용한 웨이블렛 기반 근전도 패턴인식)

  • Chu Jun-Uk;Moon Inhyuk
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.42 no.2 s.302
    • /
    • pp.39-48
    • /
    • 2005
  • This paper proposes a novel approach to recognize nine kinds of motion for a multifunction myoelectric hand, acquiring four channel EMG signals from electrodes placed on the forearm. To analyze EMG with properties of nonstationary signal, time-frequency features are extracted by wavelet packet transform. For dimensionality reduction and nonlinear mapping of the features, we also propose a feature projection composed of PCA and SOFM. The dimensionality reduction by PCA simplifies the structure of the classifier, and reduces processing time for the pattern recognition. The nonlinear mapping by SOFM transforms the PCA-reduced features to a new feature space with high class separability. Finally a multilayer neural network is employed as the pattern classifier. From experimental results, we show that the proposed method enhances the recognition accuracy, and makes it possible to implement a real-time pattern recognition.

Development of a Daily Pattern Clustering Algorithm using Historical Profiles (과거이력자료를 활용한 요일별 패턴분류 알고리즘 개발)

  • Cho, Jun-Han;Kim, Bo-Sung;Kim, Seong-Ho;Kang, Weon-Eui
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.10 no.4
    • /
    • pp.11-23
    • /
    • 2011
  • The objective of this paper is to develop a daily pattern clustering algorithm using historical traffic data that can reliably detect under various traffic flow conditions in urban streets. The developed algorithm in this paper is categorized into two major parts, that is to say a macroscopic and a microscopic points of view. First of all, a macroscopic analysis process deduces a daily peak/non-peak hour and emphasis analysis time zones based on the speed time-series. A microscopic analysis process clusters a daily pattern compared with a similarity between individuals or between individual and group. The name of the developed algorithm in microscopic analysis process is called "Two-step speed clustering (TSC) algorithm". TSC algorithm improves the accuracy of a daily pattern clustering based on the time-series speed variation data. The experiments of the algorithm have been conducted with point detector data, installed at a Ansan city, and verified through comparison with a clustering techniques using SPSS. Our efforts in this study are expected to contribute to developing pattern-based information processing, operations management of daily recurrent congestion, improvement of daily signal optimization based on TOD plans.

An OSD Menu Verification Technique using a FMM Neural Network (FMM 신경망을 이용한 OSD 메뉴 검증기법)

  • Lee Jin-Seok;Park Jung-Min;Kim Ho-Joon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2006.05a
    • /
    • pp.315-318
    • /
    • 2006
  • 본 논문에서는 TV OSD(On Screen Display) 메뉴 자동검증 시스템에서 문자패턴의 실시간 인식을 위한 방법론을 고찰한다. 이는 일반적인 문자인식 문제와는 달리 시스템 환경에 대한 몇 가지 가정과 제약조건을 고려해야 한다. 예컨대 문제의 특성상 카메라 및 TV 제어 기기부의 동작과 연동하는 작업 스케쥴링 기능과 실시간 분석기능 등의 요건은 시스템개발을 복잡하게 하는 반면, 주어진 OSD 메뉴 데이터로부터 검증과정은 미지 패턴에 대한 인식과정을 단순화하여 일종의 판정(decision) 문제로 고려될 수 있게 한다. 본 연구에서는 인식의 방법론으로서 수정된 구조의 FMM 신경망을 적용한다. 이는 하이퍼박스 기반의 패턴 분류기로서 간결하면서도 강력한 학습기능을 제공한다. 기존의 FMM 모델이 갖는 단점인 학습패턴에서 특징분포와 빈도를 고려하지 못한다는 점을 개선하여, 특징과 하이퍼박스간의 가중치 요소를 고려한 활성화 특성을 정의한다. 또한 실제 데이터를 사용한 실험결과를 통해 제안된 이론의 유용성을 고찰한다.

  • PDF

Development of Vision system for Back Light Unit of Defect (백라이트 유닛의 결함 검사를 위한 비전 시스템 개발)

  • Cho, Sang-Hee;Han, Chang-Ho;Oh, Choon-Suk;Ryu, Young-Kee
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.127-129
    • /
    • 2005
  • 본 연구에서는 백라이트 유닛의 검사를 위한 머신비전 시스템을 구축한다. 시스템은 크게 하드웨어와 소프트웨어로 나눌 수 있고 하드웨어는 조명부, 영상획득부, 로봇 암 제어부로 분류된다. 조명부는 36W FPL램프로 구성되었고 조명부의 상판에 아크릴판을 거치대로 이용하여 백라이트 유닛을 거치한다. 로봇 암 제어부는 2축 로봇 암을 제어하여 로봇 암의 센서부착 지지대에 부착된 CCD 센서를 이동시킨다. 이와 동시에 영상획득부에서는 이미지를 획득하여 PC로 전송한다. 소프트웨어의 화상처리 검사 알고리즘은 일정 패턴이 있는 도광판에 대한 검사 알고리즘과 일정패턴이 없근 백라이트 유닛에 대한 검사 알고리즘으로 분리된다. 일정 패턴이 인쇄되어 있는 패널에 대한 검사 알고리즘은 모폴로지 연산을 이용하는 템플릿 체크방법과 블록 매칭 방법이 사용되었고 일정패턴이 없는 유닛에 대한 검사는 개선된 Otsu 방법을 이용하여 얼룩이나 흐릿한 결함에 대한 결함을 검출하였다. 실험결과 불균일한 결함과 밝기가 일정하지 않은 결함일지라고 90% 이상의 검출율로 뛰어난 성능을 입증하였다.

  • PDF