Journal of the Korean Institute of Intelligent Systems
/
v.19
no.3
/
pp.297-303
/
2009
In this paper, we propose the biomedical spectral pattern classification techniques by the fusion scheme based on the SpPCA and MLP in extended feature space. A conventional PCA technique for the dimension reduction has the problem that it can't find an optimal transformation matrix if the property of input data is nonlinear. To overcome this drawback, we extract features by the SpPCA technique in extended space which use the local patterns rather than whole patterns. In the classification step, individual classifier based on MLP calculates the similarity of each class for local features. Finally, biomedical spectral patterns is classified by the fusion scheme to effectively combine the individual information. As the simulation results to verify the effectiveness, the proposed method showed more improved classification results than conventional methods.
Park, Sung-Chun;Kim, Yong-Gu;Jeong, Choen-Lee;Jin, Young-Hoon
Proceedings of the Korea Water Resources Association Conference
/
2009.05a
/
pp.1265-1271
/
2009
본 연구에서는 강우의 시 공간적 분포의 불규칙한 변동성을 고려한 강우-유출예측모형을 위해 인공신경망(Artificial Neural Networks: ANNs)의 기법의 일종인 자기조직화(Self Organizing Map: SOM) 이론과 역전파 학습 알고리즘(Back Propagation Algorithm: BPA) 이론을 복합적으로 이용하였다. 기존의 인공신경망 연구에서 야기된 저 갈수기의 유출량에 대한 과대평가, 홍수기의 유출량에 대한 과소평가, 예측값이 연속적으로 선행 유출량을 나타내는 Persistence 현상을 해결하기 위하여 패턴분류 성능을 지닌 SOM 이론을 예측모형의 전처리 과정으로 이용하였다. 먼저, 본 연구에서 제안한 방법은 SOM에 의해 강우-유출 관계를 분류하고, SOM에 의한 분류에 따라 각각의 모형을 구성한다. 개별적으로 구축된 모형은 유출량의 예측을 위해 각각의 양상에 따라 분류된 자료를 이용한다. 결과적으로 본 연구에서 제안한 방법은 과거의 인공신경망의 일반적인 적용에 의한 결과보다 더 나은 예측능력을 보여주었으며, 더불어 유출량의 과소 및 과대추정과 Persistence 현상과 같은 문제점이 나타나지 않았다. 또한 강우량 및 유출량의 범위에 제한을 받지 않는 강우-유출예측 모형의 개발 및 홍수기로부터 갈수기까지의 보다 넓은 범위의 유출량의 예측에 기여할 것으로 기대된다.
Proceedings of the Optical Society of Korea Conference
/
1991.06a
/
pp.181-184
/
1991
본 논문에서는 off-axis 평면 기준파의 각분할(angular multiflexing) 방식과 pseudo-inverse 알고리듬에 의한 SDF 필터를 결합하여 상관기를 구성하고 상관면에서의 상관반응을 관측하여, off-axis SDF 필터가 유형분류에 유용함을 입증하고, 광상관기로의 적용가능성을 보여주고자 한다.
여기서는 마이크로컴퓨터의 시험법에 관해서 현재시판되고 있는 시험기와 함께 소개하고 단일 칩마이크로컴퓨터에 관해서 실시하고 있는 시험 패턴 설계예를 약간 상세히 기술한다. 또 마이크로컴퓨터용 LSI의 고장모우드, 고장메카니즘의 분류및 고장율, 신뢰성의 현장과 문제점에 관해서 기술함과 동시에 초기불량을 제거하여 신뢰성을 향상시키는 수단으로서의 스크리닝(screening)및 신뢰도예측에 관해서 소개하고 현장에 있어서의 문제점과 대책에 관해서 논의한다.
Recently, deep learning has shown high performance in various applications such as pattern analysis and image classification. Especially known as a difficult task in the field of machine learning research, stock market forecasting is an area where the effectiveness of deep learning techniques is being verified by many researchers. This study proposed a deep learning Convolutional Neural Network (CNN) model to predict the direction of stock prices. We then used the feature selection method to improve the performance of the model. We compared the performance of machine learning classifiers against CNN. The classifiers used in this study are as follows: Logistic Regression, Decision Tree, Neural Network, Support Vector Machine, Adaboost, Bagging, and Random Forest. The results of this study confirmed that the CNN showed higher performancecompared with other classifiers in the case of feature selection. The results show that the CNN model effectively predicted the stock price direction by analyzing the embedded values of the financial data
Journal of the Korean Institute of Intelligent Systems
/
v.24
no.5
/
pp.536-541
/
2014
Data through meteorological radar includes ground echo, sea-clutter echo, anomalous propagation echo, clear echo and so on. Each echo is a kind of non-precipitation echoes and the characteristic of individual echoes is analyzed in order to identify with non-precipitation. Meteorological radar data is analyzed through pre-processing procedure because the data is given as big data. In this study, echo pattern classifier is designed to distinguish non-precipitation echoes from precipitation echo in meteorological radar data using RBFNNs and echo judgement module. Output performance is compared and analyzed by using both HCM clustering-based RBFNNs and FCM clustering-based RBFNNs.
Journal of the Institute of Electronics Engineers of Korea SC
/
v.42
no.2
s.302
/
pp.39-48
/
2005
This paper proposes a novel approach to recognize nine kinds of motion for a multifunction myoelectric hand, acquiring four channel EMG signals from electrodes placed on the forearm. To analyze EMG with properties of nonstationary signal, time-frequency features are extracted by wavelet packet transform. For dimensionality reduction and nonlinear mapping of the features, we also propose a feature projection composed of PCA and SOFM. The dimensionality reduction by PCA simplifies the structure of the classifier, and reduces processing time for the pattern recognition. The nonlinear mapping by SOFM transforms the PCA-reduced features to a new feature space with high class separability. Finally a multilayer neural network is employed as the pattern classifier. From experimental results, we show that the proposed method enhances the recognition accuracy, and makes it possible to implement a real-time pattern recognition.
The Journal of The Korea Institute of Intelligent Transport Systems
/
v.10
no.4
/
pp.11-23
/
2011
The objective of this paper is to develop a daily pattern clustering algorithm using historical traffic data that can reliably detect under various traffic flow conditions in urban streets. The developed algorithm in this paper is categorized into two major parts, that is to say a macroscopic and a microscopic points of view. First of all, a macroscopic analysis process deduces a daily peak/non-peak hour and emphasis analysis time zones based on the speed time-series. A microscopic analysis process clusters a daily pattern compared with a similarity between individuals or between individual and group. The name of the developed algorithm in microscopic analysis process is called "Two-step speed clustering (TSC) algorithm". TSC algorithm improves the accuracy of a daily pattern clustering based on the time-series speed variation data. The experiments of the algorithm have been conducted with point detector data, installed at a Ansan city, and verified through comparison with a clustering techniques using SPSS. Our efforts in this study are expected to contribute to developing pattern-based information processing, operations management of daily recurrent congestion, improvement of daily signal optimization based on TOD plans.
Proceedings of the Korea Information Processing Society Conference
/
2006.05a
/
pp.315-318
/
2006
본 논문에서는 TV OSD(On Screen Display) 메뉴 자동검증 시스템에서 문자패턴의 실시간 인식을 위한 방법론을 고찰한다. 이는 일반적인 문자인식 문제와는 달리 시스템 환경에 대한 몇 가지 가정과 제약조건을 고려해야 한다. 예컨대 문제의 특성상 카메라 및 TV 제어 기기부의 동작과 연동하는 작업 스케쥴링 기능과 실시간 분석기능 등의 요건은 시스템개발을 복잡하게 하는 반면, 주어진 OSD 메뉴 데이터로부터 검증과정은 미지 패턴에 대한 인식과정을 단순화하여 일종의 판정(decision) 문제로 고려될 수 있게 한다. 본 연구에서는 인식의 방법론으로서 수정된 구조의 FMM 신경망을 적용한다. 이는 하이퍼박스 기반의 패턴 분류기로서 간결하면서도 강력한 학습기능을 제공한다. 기존의 FMM 모델이 갖는 단점인 학습패턴에서 특징분포와 빈도를 고려하지 못한다는 점을 개선하여, 특징과 하이퍼박스간의 가중치 요소를 고려한 활성화 특성을 정의한다. 또한 실제 데이터를 사용한 실험결과를 통해 제안된 이론의 유용성을 고찰한다.
본 연구에서는 백라이트 유닛의 검사를 위한 머신비전 시스템을 구축한다. 시스템은 크게 하드웨어와 소프트웨어로 나눌 수 있고 하드웨어는 조명부, 영상획득부, 로봇 암 제어부로 분류된다. 조명부는 36W FPL램프로 구성되었고 조명부의 상판에 아크릴판을 거치대로 이용하여 백라이트 유닛을 거치한다. 로봇 암 제어부는 2축 로봇 암을 제어하여 로봇 암의 센서부착 지지대에 부착된 CCD 센서를 이동시킨다. 이와 동시에 영상획득부에서는 이미지를 획득하여 PC로 전송한다. 소프트웨어의 화상처리 검사 알고리즘은 일정 패턴이 있는 도광판에 대한 검사 알고리즘과 일정패턴이 없근 백라이트 유닛에 대한 검사 알고리즘으로 분리된다. 일정 패턴이 인쇄되어 있는 패널에 대한 검사 알고리즘은 모폴로지 연산을 이용하는 템플릿 체크방법과 블록 매칭 방법이 사용되었고 일정패턴이 없는 유닛에 대한 검사는 개선된 Otsu 방법을 이용하여 얼룩이나 흐릿한 결함에 대한 결함을 검출하였다. 실험결과 불균일한 결함과 밝기가 일정하지 않은 결함일지라고 90% 이상의 검출율로 뛰어난 성능을 입증하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.