• 제목/요약/키워드: 패턴데이터

검색결과 3,444건 처리시간 0.034초

지능형 시스템기반의 침입탐지모델 (Intrusion Detection Model based on Intelligent System)

  • 김명준;양지흥;한명묵
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2002년도 추계학술대회 및 정기총회
    • /
    • pp.243-248
    • /
    • 2002
  • 빠르게 변해 가는 정보화사회에서 침입 탐지 시스템은 정밀성과 적웅성, 그리고 확장성을 필요로 한다. 또한 복잡한 Network 환경에서 중요하고 기밀성이 유지되어야 할 리소스를 보호하기 위해, 더욱 구조적이고 지능적인 IDS(Intrusion Detection System)개발의 필요성이 요구되고 있다. 본 연구는 이를 위한, 지능적인 IDS를 위해 침입패턴을 생성하기 위한 모델을 도출함에 목적이 있다. 침입 패턴은 방대한 양의 데이터를 갖게 되고, 이를 정확하고 효율적으로 관리하기 위해서 데이터마이닝의 주요 2분야인 Link analysis와 Sequence analysis를 이용하여 정확하고 신뢰성 있는 침입규칙을 생성하기 위한 모델을 도출해낸다 이 모델은 "Time Based Traffic Model", "Host Based Traffic Model", "Content Model"로 각각 상이한 침입 패턴을 생성하게 된다. 이 모델을 이용하면 좀더 효율적이고 안정적으로 패턴을 생성 할 수 있다, 즉 지능형 시스템기반의 침입 탐지 모델을 구현할 수 있다. 이러한 모델로 생성한 규칙은 침입데이터를 대표하는 규칙이 되고, 이는 비정상 사용자와 정상 사용자를 분류하게 된다 모델에 사용된 데이터는 KDD컨테스트의 데이터를 이용하였다. 사용된 데이터는 KDD컨테스트의 데이터를 이용하였다.

수평 분산 데이터베이스 상의 세부 데이터 유출이 없는 순차 패턴 마이닝 기법 (Privacy Preserving Distributed Data Mining of Sequential Patterns on Horizontally Partitioned Databases)

  • 김승우;원정임;박상현
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2005년도 한국컴퓨터종합학술대회 논문집 Vol.32 No.1 (B)
    • /
    • pp.61-63
    • /
    • 2005
  • 본 논문에서는 수평 분산 데이터베이스에서 각 로컬 데이터베이스의 세부 데이터를 유출하지 않는 순차패턴 마이닝 기법을 제안한다. 데이터 마이닝은 대용량 데이터베이스에서 유용한 지식을 추출하는 기법으로서 각광을 받고 있다. 그러나 분산 데이터베이스를 대상으로 마이닝을 수행하는 경우, 데이터 공유에 따른 개인 혹인 집단의 프라이버시가 유출될 수 있다는 문제점이 존재한다. 따라서 본 논문에서는 프라이버시 보호를 위하여 각 로컬 데이터베이스의 세부 데이터를 보호하면서도, 마이닝 결과의 정확성을 보장할 수 있는 새로운 순차 패턴 마이닝 기법을 제안한다. 제안된 기법에서는 우선, 세부 데이터의 유출을 방지하기 위하여 마이닝의 대상이 되는 항목과 항목간의 시간 선후 관계의 성립 여부를 벡터로 표현한 후, 이들 벡터간의 스칼라 프로덕트 연산을 수행하여 얻어진 결과를 패턴의 지지도로 활용하는 방안을 제안하였다. 또한, 연산 결과에 영향을 미치지 않는 벡터를 미리 제거하여 스칼라 프로덕트 연산에 따른 비용을 감소시키는 방안을 제안하였다.

  • PDF

궤적 스트림 데이터로부터 동행 그룹 탐색 기법 (A Method for Finding Accompany Group from Trajectory Stream Data)

  • 강수현;이기용
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2019년도 춘계학술발표대회
    • /
    • pp.363-366
    • /
    • 2019
  • 객체들의 움직임의 흐름을 나타내는 궤적 데이터에서 함께 움직이는 궤적을 찾아 움직임 패턴을 탐색하는 연구들이 많이 이루어져 왔다. 하지만, 궤적 스트림 데이터에서 궤적의 이동 패턴을 탐색하는 연구는 많이 이루어지지 않았다. 그래서 본 논문은 시간의 흐름에 따라 흘러 들어오는 궤적 스트림 데이터에서 궤적의 이동 패턴을 탐색하여 동행 그룹을 탐색하는 새로운 방법을 제안한다. 기존에도 궤적 스트림 데이터에서 궤적들이 주어졌을 때 궤적들의 이동 패턴을 찾는 연구들은 존재하였으나 발견된 궤적이 언제 생성되었고 언제 소멸되었는지에 대한 정보를 자동으로 출력해 주는 연구는 아직 이루어진 바가 없다. 본 논문에서는 서로 다른 시간에 나타나고 사라지는 모습을 가진 궤적 스트림 데이터에서 동일한 시간에 나타나는 궤적을 찾는 방법을 제안한다. 제안 방법은 객체들의 좌표를 점진적으로 클러스터링을 수행하여 사용자에게 입력받은 지속 시간 이상 클러스터를 유지한 동행 그룹의 객체들을 반환한다. 또한, 기존 연구와 달리 해당 객체들의 지속 시간인 시작과 끝 시간도 자동으로 출력해 준다.

CEP를 위한 데이터 마이닝 기법 연구 (A Study of Data Mining Techniques for CEP)

  • 강동현;황부현
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2012년도 춘계학술발표대회
    • /
    • pp.1116-1117
    • /
    • 2012
  • 최근에 이슈가 되고 있는 빅 데이터 처리 방법중의 하나로 CEP가 있다. 그러나 CEP는 사전에 정의된 질의에 해당되는 이벤트만을 선별하여 패턴 매칭 등의 기능을 수행하므로, 새로이 발견되는 이벤트를 찾는데 제약이 있다. 또한 실시간으로 생산되는 빅 데이터에 기초한 다양한 패턴 탐사에 한계를 노출하고 있다. 이 논문에서는, CEP 환경에서 빅 데이터 사이에 존재하는 다양한 이벤트와 패턴 탐사를 위한 실시간 데이터 마이닝 기법을 제안한다. 제안 방법은 CEP 엔진을 위한 고급의 패턴 매칭을 개발하고, CEP를 위한 실시간 데이터 마이닝 기법을 개발한다. 마지막으로, 기존의 CQL을 확장하여 개발한다. 이라한 방법을 통하여 기존의 CEP의 기능적인 한계를 극복할 수 있다.

매트릭스 프로파일을 이용한 제조 시계열 데이터 패턴 추출 (Pattern Extraction of Manufacturing Time Series Data Using Matrix Profile)

  • 김태현;진교홍
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 추계학술대회
    • /
    • pp.210-212
    • /
    • 2022
  • 제조업에서 생산 설비의 상태를 모니터링하기 위해 각종 센서를 부착하고 있으며, 이를 통해 획득된 데이터의 경우 시계열 데이터인 경우가 많다. 생산 설비의 이상 여부를 판단하기 위해서는시계열 데이터로부터 패턴을 추출하는 과정이 선행되어야 하며 다양한 방법이 연구되고 있다. 본 논문에서는 수집된 다변량 시계열 데이터로부터 패턴을 추출하기 위해 매트릭스 프로파일 알고리즘을 적용하였으며, 이를 통해 현재 CNC 머신으로부터 수집 중인 다중 센서 데이터의 패턴을 추출하였다.

  • PDF

기술현황분석 - EBP 알고리즘을 이용한 부분방전 패턴인식 기술 개발에 관한 연구

  • 정경열;이후락;한정은;박정태;장경선;김용식
    • 기계와재료
    • /
    • 제21권3호
    • /
    • pp.62-73
    • /
    • 2009
  • 전력기기에서 발생하는 부분방전을 정확히 측정하고 이를 올바르게 해석하는 작업은 신뢰성 있는 진단법을 개발하고 이를 현장에 적용하는데 있어 대단히 중요하다. 측정된 고주파 데이터를 패턴 분석이 가능한 형태로 가공하는 전처리 과정을 수행하고, 가공된 데이터를 패턴인식을 통하여 기존의 각 노이즈 및 부분방전 패턴과 비교하여 실제 측정된 데이터가 어떤 부분방전 패턴인지 판단한다. 패턴 인식 처리 방법으로는 컴퓨터 분야 신경회로망의 BP 알고리즘과 SOM 알고리즘이 널리 사용되고 있으며 본 연구에서는 TF-MAP, PRPDA, EBP 알고리즘을 이용하여 부분방전 패턴인식 기술 개발에 관한 연구를 수행하였다.

  • PDF

대용량 데이터베이스에서 클러스터링을 이용한 빈발 패턴 생성 (Creation of Frequent Patterns using Clustering in Large Database)

  • 김의찬;황병연
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2005년도 가을 학술발표논문집 Vol.32 No.2 (2)
    • /
    • pp.100-102
    • /
    • 2005
  • 데이터베이스에 저장되어 있는 데이터들을 통해서 의미있는 정보를 찾는 것이 데이터 마이닝이다. 많은 데이터 마이닝 기법들 중에 연관규칙을 다루는 연구가 많이 이루어지고 있다. 연관규칙 기법도 다양하게 연구되고 있는데 그 중 빈발 패턴 트리(FP-Tree)라는 방법을 이용하여 빈발 패턴을 찾아내는 연구가 활발히 진행되고 있다. 빈발 패턴 트리는 기존에 잘 알려져있는 연관규칙 생성 기법인 Apriori 기법보다 우수한 성능을 가지는 방법이다. 그러나 빈발 패턴 트리도 몇가지 문제점을 가지고 있다. 본 논문에서는 빈발 패턴 트리의 문제점 중 하나인 과도한 FP-Tree 생성을 줄이려 한다. 조건부 패턴 베이스를 통해 얻어지는 조건부 FP-Tree의 생성을 줄여 기존의 FP-Tree보다 더 나은 성능을 얻기 위해서 적절한 클리스터링을 이용하려 한다. 클러스터링 기법은 비트 트랜잭션을 이용한 클러스터링 방법을 이용한다.

  • PDF

사실적인 거품 패턴 텍스처를 생성하기 위한 인공신경망 기반의 텍스처 합성 프레임워크 (Texture Synthesis Framework via Artificial Neural Networks for Generating Realistic Foam Pattern Textures)

  • 추연희;김종현
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2024년도 제69차 동계학술대회논문집 32권1호
    • /
    • pp.399-401
    • /
    • 2024
  • 본 논문에서는 텍스처 합성 기술을 활용하여 가상의 거품 패턴 텍스처를 생성하기 위한 합성 데이터 구축 방법을 소개한다. 물리 기반 유체 시뮬레이션에서 거품 표현은 2차 효과(Secondary effects)로 분류되며, 그만큼 계산량이 큰 작업이다. 게임 업계에서는 저사양 디바이스에서도 실시간으로 게임이 실행되어야 하므로 상대적으로 계산량이 큰 물리 기반 시뮬레이션을 통해 거품을 표현하기 어렵다. 대부분 사용자가 임의로 그린 거품 패턴을 화면에 매핑하여 적은 계산량을 통해 거품을 표현하지만, 시뮬레이션을 통해 만들어진 데이터가 아니기 때문에 품질을 보장하기 어렵다. 본 논문에서는 물리 기반 시뮬레이션을 통해 만들어진 거품 패턴을 텍스처 합성 기술을 통해 재생산(Reproduction)함으로써 수작업으로 그린 거품 패턴에서는 표현하기 어려운 고품질 거품 패턴 텍스처를 만들어 낸다.

  • PDF

규칙 Set 을 이용한 효율적인 실시간 침입탐지 (Efficient real time intrusion detection using a rule set)

  • 추혜연;옥지웅;김응모
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2007년도 추계학술발표대회
    • /
    • pp.247-249
    • /
    • 2007
  • 데이터 마이닝은 데이터 속에 숨겨져 있는 의미 있는 패턴을 찾아내는 것이다. 이러한 패턴들을 찾아내는 것은 데이터 마이닝에서 중요한 부분을 차지한다. 그러나 기존의 데이터 마이닝 방법들에 사용되는 데이터는 시간의 흐름에 데이터가 변하지 않는다는 특징을 가지고 있다. 시간의 흐름에 따라 변화하는 데이터의 특성을 고려해볼 때 변하지 않는 데이터에서 패턴을 찾아내는 것은 의미가 없는 일이다. 따라서 실시간으로 변하는 데이터의 특성을 고려하고 더불어 적합한 실시간 침입 탐지 방법이 필요하다. 따라서, 본 연구에서는 시간의 흐름에 따라 변하는 데이터에서 규칙을 발견하여 규칙 Set 을 생성하는 실시간 데이터 마이닝 기법을 이용하여 시간의 흐름에 따라 변하는 데이터에 대한 침입을 감시하기 위해 실시간 침입 탐지 시스템에 적용함으로써 보다 효율적으로 침입을 탐지하기 위한 방법을 제시한다.

시계열 데이터로부터의 경향성 기반 순차패턴 탐색 (Trend-based Sequential Pattern Discovery from Time-Series Data)

  • 오용생;이동하;남도원;이전영
    • 지능정보연구
    • /
    • 제7권1호
    • /
    • pp.27-45
    • /
    • 2001
  • 데이터마이닝에서 시계열 데이터로부터 순차패턴을 발견하는 연구는 사건이나 아이템이 주로 연구되어왔지만, 최근에는 설비의 상태를 알 수 있는 센서와 같은 수치 값의 형태를 가지는 분야에 관심을 가지게 되었다. 그러나 수치 형태의 데이터는 패턴을 만드는 동안 동일한 값을 가지는 경우가 거의 없기 때문에 기존의 사건이나 아이템 등으로 변환될 수 있는 패턴요소의 특징을 만드는 것이 가장 중요하다. 이러한 패턴요소를 발견하는 지금가지 방법은 이동 윈도우와 클러스터링을 사용하는 방법을 적용하였는데, 이러한 방법은 다양한 윈도우의 크기와 클러스터 값을 적용하여 반복적으로 작업을 하며, 찾아진 결과를 해석하는데도 많은 문제가 있다. 본 연구는 수치 값을 가진 데이터를 벡터의 형태로 만들어 패턴요소를 만드는 방법을 제시한다. 이렇게 만들어진 패턴요소는 전체 데이터를 사용하는 것 보다 이해되기 쉽고 보다 빠르게 순차패턴을 찾을 수 있다. 벡터로 변환된 패턴요소는 각도와 크기를 가지는데 우리는 이들 벡터들의 상호 연관성을 정의하고, 이들 연관성을 이용하여 순차패턴을 찾는 방법을 제시한다.

  • PDF