Recently, based on dynamic location or mobility of moving object, many researches on pattern mining methods actively progress to extract more available patterns from various moving patterns for development of location based services. The performance of moving pattern mining depend on how analyze and process the huge set of spatio-temporal data. Some of traditional spatio-temporal pattern mining methods[1-6,8-11]have proposed to solve these problem, but they did not solve properly to reduce mining execution time and minimize required memory space. Therefore, in this paper, we propose new spatio-temporal pattern mining method which extract the sequential and periodic frequent moving patterns efficiently from the huge set of spatio-temporal moving data. The proposed method reduces mining execution time of $83%{\sim}93%$ rate on frequent moving patterns mining using the moving sequence tree which generated from historical data of moving objects based on hash tree. And also, for minimizing the required memory space, it generalize the detained historical data including spatio-temporal attributes into the real world scope of space and time using spatio-temporal concept hierarchy.
Journal of the Korean Institute of Intelligent Systems
/
v.24
no.3
/
pp.285-291
/
2014
Recently, many researchers have paid attention to the study on generation of new linked data from tables by using linked open data (e.g. RDF, OWL). This paper proposes a new method for such generation of linked data. A pattern-based method intrinsically has a conflict problem among patterns. For instance, several patterns, mapping a single header of a table into different properties of linked data, conflict with each others. Existing studies have sacrificed precision by applying a statistically dominant pattern or have ignored conflicting patterns to increase precision. The proposed method finds appropriate patterns for all headers in a given table by connecting patterns applied to the headers. Experiments using DBPedia and Wikipedia showed results that conflicts of patterns are effectively resolved by the proposed method.
Journal of Korea Spatial Information System Society
/
v.12
no.1
/
pp.49-56
/
2010
Many researches of frequent pattern mining technique for detecting unknown patterns on spatial data have studied actively. Existing data structures have classified into tree-structure and array-structure, and those structures show the weakness of performance on dense or sparse data. Since spatial data have obtained the characteristics of dense and sparse patterns, it is important for us to mine quickly dense and sparse patterns using only single algorithm. In this paper, we propose novel data structure as compressed patricia frequent pattern tree and frequent pattern mining algorithm based on proposed data structure which can detect frequent patterns quickly in terms of both dense and sparse frequent patterns mining. In our experimental result, proposed algorithm proves about 10 times faster than existing FP-Growth algorithm on both dense and sparse data.
Data mining techniques have been suggested to find efficiently meaningful and useful information. Especially, in the big data environments, as data becomes accumulated in several applications, related pattern mining methods have been proposed. Recently, instead of analyzing not only static data stored already in files or databases, mining dynamic data incrementally generated in a real time is considered as more interesting research areas because these dynamic data can be only one time read. With this reason, researches of how these dynamic data are mined efficiently have been studied. Moreover, approaches of mining representative patterns such as maximal pattern mining have been proposed since a huge number of result patterns as mining results are generated. As another issue, to discover more meaningful patterns in real world, weights of items in weighted pattern mining have been used, In real situation, profits, costs, and so on of items can be utilized as weights. In this paper, we analyzed weighted maximal pattern mining approaches for data generated incrementally. Maximal representative pattern mining techniques, and incremental pattern mining methods. And then, the application scenarios for analyzing the required commodity patterns in infants are presented by applying weighting representative pattern mining. Furthermore, the performance of state-of-the-art algorithms have been evaluated. As a result, we show that incremental weighted maximal pattern mining technique has better performance than incremental weighted pattern mining and weighted maximal pattern mining.
Journal of the Korea Society of Computer and Information
/
v.15
no.9
/
pp.35-46
/
2010
Sequential pattern mining is one of the essential data mining tasks, and it is widely used to analyze data generated in various application fields such as web-based applications, E-commerce, bioinformatics, and USN environments. Recently data generated in the application fields has been taking the form of continuous data streams rather than finite stored data sets. Considering the changes in the form of data, many researches have been actively performed to efficiently find sequential patterns over data streams. However, conventional researches focus on reducing processing time and memory usage in mining sequential patterns over a target data stream, so that a research on mining more interesting and useful sequential patterns that efficiently reflect the characteristics of the data stream has been attracting no attention. This paper proposes a mining method of sequential patterns over data streams with a gap constraint, which can help to find more interesting sequential patterns over the data streams. First, meanings of the gap for a sequential pattern and gap-constrained sequential patterns are defined, and subsequently a mining method for finding gap-constrained sequential patterns over a data stream is proposed.
Jo, Jae-Hui;Seo, Il-Jeong;Lee, Deok-Gyu;Ha, Byeong-Guk
한국경영정보학회:학술대회논문집
/
2007.06a
/
pp.603-607
/
2007
GPS 수신기의 지속적인 가격 하락과 GPS 기반의 다양한 위치기반서비스 개발로 인하여 개인 휴대용 GPS 수신기의 보급이 확대되고 있다. 이동객체의 위치 및 시간 정보를 포함하고 있는 GPS 데이터를 분석하면 이전에는 불가능했던 이동패턴을 파악하고 이해하는 것이 가능해진다. 이동객체 데이터의 저장과 분석에 관한 연구들이 진행되고 있지만, 이동객체의 속성에 따른 다차원적 이동패턴 분석에 관한 연구는 찾아보기 힘들다. 본 연구는 개인 휴대용 GPS 수신기를 통해 수집된 이동 데이터와 이동객체의 속성 데이터를 통합하여 이동객체의 시공간적 특성을 다차원적으로 분석할 수 있는 데이터마트를 구현하고 시각적으로 표현하였다. 이러한 과정을 통해 GPS 데이터를 이용한 이동패턴 분석의 유용성과 문제점을 탐색적으로 살펴보았다.
Proceedings of the Korean Information Science Society Conference
/
2003.10b
/
pp.130-132
/
2003
현재 세계 각국에서 많은 메타데이터 레지스트리들이 구축되어 왔다 그러나 메타데이터 레지스트리가 국제 표준(ISO/IEC 11179)임에도 불구하고 일관성 있는 표준 접근 인터페이스를 제공하지 않음으로써 각각 다른 연산으로 구현되었다. 이는 각각의 메타데이터 레지스트리 구축시 동일한 연산 패턴의 중복된 구현으로 인한 불필요한 비용을 야기한다. 국제 표준인 메타데이터 레지스트리에 대한 접근시 시스템 마다 동일한 연산 패턴을 지니게 된다. 이 논문에서는 이와 같이 메타데이터 레지스트리에서 공통적으로 사용되는 연산 패턴을 분석하고 정의한다. 또한 분석된 연산 패턴을 이용하여 표준 SQL을 확장한 SQL/MDR을 정의하고 설계한다. 설계된 SOL/MDR은 메타데이터 레지스트리 관리 시스템 개발에 표준 접근 방법을 제공한다. 또한 이는 개별적인 개발로 인한 추가적인 노력을 감소시키고 메타데이터 레지스트리에 대한 보다 일관성 있는 접근을 가능하게 한다.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2000.05a
/
pp.31-34
/
2000
코호넨 자기조직 신경망을 사용하면 클러스터링뿐만 아니라 그 데이터가 할당된 클러스터의 대표값(Centroid)과의 거리 차이(Quantization Error)를 알아볼 수 있다 이를 이용하면 어떤 데이터가 정상적인 분포를 따르는지 정상적인 분포에서 벗어나는 비정상적인 데이터인지 알 수 있고, 유닉스 시스템 사용자의 명령어 사용 패턴에 적용하여 어떤 사용자의 명령어 사용 패턴이 정상적인 것인지 비정상적인 것인지 알 수 있다. 본 논문에서는 유닉스 시스템 사용자 8명의 명령어 패턴을 클러스터링한 후 Quantization Error를 이용하여 비정상 패턴을 탐지하는 오프라인에서의 비정상 행위를 탐지하는 시스템을 구현하였다. 그리고 통계적인 학습 방법을 적용한 비정상 패턴 탐지와의 비교를 통하여 두 가지 비정상 패턴 탐지 결과가 동일함을 확인하였다.
Kim, Hyun-Uk;Song, Ha-Yoon;Choi, Dong-Yeon;Kim, Dong-yup
Annual Conference of KIPS
/
2013.11a
/
pp.1665-1668
/
2013
본 논문에서는 인간의 일일 이동패턴을 모델링하기 위해 사람의 이동정보인 위치데이터를 바탕으로 위치분석(Location Analysis)을 통해 사람의 이동패턴이 날마다 어떤 형태로 나타나고 반복되는지 보이려고 한다. 이에 사람의 이동패턴은 자주 방문하거나 특정시간이상 머문 공간간의 이동이라고 정의하고, 해당 공간을 하나의 군집으로 하는 군집간의 이동 모습으로 인간의 이동 모습을 나타내고자 한다. 위치데이터를 일일 기반으로 위치분석을 하게 되면 일일 이동모습을 나타낼 수 있고, 이러한 일일 이동모델을 통합하여 분석하게 되면 사람의 전체 이동모델을 나타낼 수 있다. 이렇게 분석된 일일 이동모델과 전체 이동모델을 시간대별로 다시 분석하게 되면 전체 이동모델에 대해 일일 이동모델이 어떠한 형태로 중첩되는지 그 패턴을 찾아볼 수가 있다. 이와 같은 방식으로 우리는 위치데이터에서 일일 이동모델, 전체 이동모델, 그리고 시간대별 이동패턴을 찾아낼 수 있었다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2016.06a
/
pp.103-105
/
2016
본 논문에서는 손의 움직임 패턴으로 암호를 구성하고, 이를 인식하는 보안 시스템에서 기존의 고정된 공간에서 방향 데이터 범위를 생성하여 입력되는 패턴마다 적응적으로 방향 데이터를 뽑아낼 수 없었던 단점을 극복하고자 입력되는 움직임 패턴의 방향 데이터를 입력 패턴마다 적응적으로 생성하는 방법을 제안한다. 기존의 고정된 공간에서의 방향 데이터 생성 방식 기법과 비교 실험한 결과 정인식률 94.2%로 기존방식의 91.4%보다 높은 인식률로 만족할 만한 성능을 보여줌을 확인할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.