• Title/Summary/Keyword: 패치재료

Search Result 45, Processing Time 0.021 seconds

Comparative Study of Bifurcation Behavior of Rubber in Accordance with the Constitutive Equations (구성방정식에 따른 고무 분기점 거동 비교 연구)

  • Park, Moon-Shik;Song, Seung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.6
    • /
    • pp.731-742
    • /
    • 2010
  • Modeling of rubber for design or analysis often requires confusing or complex work because there are a large number of constitutive models to be considered. Some models have few material constants, while others have many. Researchers have to prepare and fit extensive experimental data with caution and discretion. In this paper, we first compared some typical rubber models in which deformation was carried out by stretching up to around eight times the original size. We conclude that continuum-based models and chain molecular models can be used in the study of the small deformation in most engineering applications, but chain molecular models are preferred in the study of the large deformations in most biomaterial applications. As discrimination problems, Treloar's patch and cylindrical balloon stick are tested theoretically and numerically for studying bifurcation. In the case of Treloar's patch, by using the Kearsley's equation, we show that bifurcation exists for continuum-based models but not for chain molecular models. Both models show bifurcation in the cylindrical balloon stick. Therefore, in the analysis of the bifurcation of rubber showed that its existence also depends on the constitutive model selected.

Critical Elastic Buckling Load Investigation of Aluminium Alloy A6082-T6 Square plate Subjected to Patch Loading (패치 로딩을 받는 알루미늄 합금 A6082-T6 사각형 판의 임계 탄성좌굴하중 검토)

  • Oh, Young-Cheol;Ko, Jae-Yong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.4
    • /
    • pp.451-460
    • /
    • 2014
  • In this paper, we examined the problem of the structural stability according to the patch load of a rectangular plate that reflects the material properties of A6082-T6 is used primarily for marine plant structure. it applied to the four patch loading shapes, the effect of aspect ratio, a boundary condition and calculated the critical elastic buckling load. Calculating the critical elastic buckling load, During the eigenvalue buckling analysis it is applied to the shell181 as 4 node shell element. when the plate subjected to patch loading compare to the plate under a uniform axial compression load, it is possible observed to occur the different elastic buckling behaviour and it could be confirmed that it is affected significantly on a variable position and type of loadings, such as the effect of the aspect ratio. Also, Critical elastic buckling load according to th patch loading type in simply supported rectangular plate a/b=1.0, ${\gamma}b$=200mm are calculated 67%(Loading type I), 119 %(Loading type II), 76 %(Loading type III), 160 %(Loading type IV), respectively. Loading type I and III could be determined with the strong elastic buckling behavior much more than Loading type II and IV.

The Study of the Fatigue Behavior of AI 6061-T6 Alloy Structure Repaired by Composite Patch (복합재료 패치로 보수된 AI 6061-T6 합금 구조물의 피로거동 연구)

  • 박종준;윤영기;김국기;윤희석
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.115-118
    • /
    • 2000
  • The development of high-strength fibers such as boron/epoxy and carbon/epoxy and adhesives has made it possible to repair cracked metallic plates by bonding reinforcing patches to the plate over the crack. In this study, aluminum 6061-T6 alloy plates with the high strength are applied to specimens with a cracked bolt hole to study the effect of diverse patch materials on the fatigue behavior of this structure. Additionally, the observation of the effort of different patch sizes on the specimen was performed. The results shows that the patch repair can improve the static strength by about 17% and the fatigue life by 200% compared with non-repaired case. And it was also revealed that the patching method along to crack growth direction is mort efficient in cost and weight reduction.

  • PDF

Analysis of fatigue crack growth behavior in composite-repaired aluminum place (복합재 패치 보강 평판의 균열선단 진전거동 해석)

  • 이우용;이정주
    • Composites Research
    • /
    • v.17 no.4
    • /
    • pp.68-73
    • /
    • 2004
  • An analytical study was conducted to characterize the fatigue crack growth behavior of pre-cracked aluminum plates repaired with asymmetric bonded composite patch. For single-sided repairs, due to the asymmetry and the presence of out-of$.$plane bending, crack front shape would become skewed curvilinear started from a uniform through-crack profile, as observed from Previous studies. Therefore, for the accurate investigation of fatigue behavior, it is necessary to predict the actual crack front evolution and take it into consideration in the analysis. In this study, the fatigue analysis of single-sided repairs considering crack front shape development was conducted by implementing three-dimensional successive finite element method coupled with linear elastic fracture mechanics (LEFM) concept, which enables the growing crack front to be directly traced and modeled in a step by step way. Through conducting present analysis technique, crack path of the patched plate as well as the fatigue life was evaluated with sufficient accuracy. The analytical predictions of both the crack front shape evolution and the fatigue life were in good agreement with the experimental observations.

Fatigue Strength of Composite Joint Structures Reinforced by Jagged Shaped Stainless Steel Z-pins (요철 형상의 스테인레스강 Z-핀으로 보강된 복합재 접합 구조물의 피로강도)

  • Choi, Ik-Hyeon;Lim, Cheol-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.12
    • /
    • pp.967-974
    • /
    • 2013
  • Recently the authors had proposed the z-pinning patch concept to simply manufacture z-pinned composite structures at industrial production site and manufactured composite single-lap shear joint specimens using the concept. Through static tensile test on the specimens they had obtained 54~68% improvement of the joint strength. As a sequential study of it, in this study, fatigue test has performed to measure an improvement of joint strength under cyclic loading. The z-pin's material is stainless steel and its surface was specially machined into zagged shapes and chemically corroded to increase the connection force with composite materials. Approximately 98~125% improvement of the joint strength under cyclic loading was obtained.

회전기 고정자권선의 부분방전 진단용 평면 패치센서의 설계 및 실험

  • Yang, Sang-Hyeon;Park, No-Jun;Kim, Chung-Sik;Park, Dae-Hui
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.228-228
    • /
    • 2009
  • In stator windings of a 6.6kV rotating machine, internal discharge, corona discharge, and surface discharge are mainly caused by internal voids and insulation degradation. In the case of the discharge spark and electromagnetic pulse generated from a discharge source, we can detect it using various RF resonators like an EM sensor. In order to detect these types of electromagnetic sources, we designed and fabricated a planar patch sensor using a CST-MWS simulation, and PD signals from artificial defected stator windings were also measured by the sensor proposed in this study. Furthermore, In the results of the experiment, it showed similar performance to the HFCT sensor.

  • PDF

Design and analyes of reconfigurable inset-fed microstrip patch antennas for wireless sensor Networks (무선 센서 네트워크용 주파수 조정이 가능한 마이크로 스트립 패치 안테나 설계 및 해석)

  • Phan, Duy Thach;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.129-129
    • /
    • 2009
  • In this paper, a tunable microstrip patch antenna designed using RF MEMS switches is reported. The design and simulation antenna were performed using high frequency structure simulator (HFSS). The antenna was designed in ISM Band and operates simultaneously at 2.4 GHz and 5.7 GHz with a -10 dB return-loss bandwidth of 20 MHz and 180 MHz, respect-tively. To obtain high efficiency and improve integrated ability, the High Resistivity Silicon (HRS) wafer was used for the antenna. The antenna achieved high gain with 8 dB at 5.7 GHzand 1.5 dB at 2.4 GHz. The RF MEMS DC contact switches was simulated and analysis by ANSYS software.

  • PDF

Analysis of fatigue crack growth behavior in composite-repaired aluminum plate (복합재 패치로 한쪽 면을 보강한 평판의 균열선단 진전거동 해석)

  • Lee Woo-Yong;Lee Jung-Ju
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.241-245
    • /
    • 2004
  • An analytical study was conducted to characterize the fatigue crack growth behavior of pre-cracked aluminum plates repaired with asymmetric bonded composite patch. For single-sided repairs, due to the asymmetry and the presence of out-of-plane bending, crack front shape would become skewed curvilinear started from a uniform through-crack profile, as observed from previous studies. In this study, the fatigue analysis of single-sided repairs considering crack front shape development was conducted by implementing three-dimensional successive finite element method coupled with linear elastic fracture mechanics (LEFM) concept, which enables the growing crack front to be directly traced and modeled in a step by step way. Through conducting present analysis technique, crack path of the patched plate as well as the fatigue life was evaluated with sufficient accuracy. The analytical predictions of both the crack front shape evolution and the fatigue life were in good agreement with the experimental observations.

  • PDF

A study of the inset-fed 4x4 microstrip patch array antenna for X-band applications (X-band 대역용 4x4 인셋 급전 마이크로스트립 패치 배열 안테나 연구)

  • Nkundwanayo Seth;Gyoo-Soo Chae
    • Journal of Advanced Technology Convergence
    • /
    • v.3 no.3
    • /
    • pp.9-15
    • /
    • 2024
  • This paper details research on the optimized design and fabrication of a 4x4 microstrip array antenna intended for X-Band applications. The study focuses on achieving the desired resonance frequency and gain by modifying the microstrip patch and array antenna parameters, including substrate type and patch size. It presents results from designing and fabricating a 4x4 array antenna with optimum substrate materials to enhance X-Band resonance characteristics and gain. The antenna dimensions are 10mm(W)x7.4mm(L)x 0.79mm(H), with an Rogers RO 4350B dielectric substrate (εr=3.54) and an inset-fed feeding method to minimize antenna size. Both the single patch and 4x4 array antennas demonstrated stable SWR (<1.5) and a gain of 18.5dBi at the target frequency of 10.3GHz in simulations. The fabricated antenna showed performance consistent with simulation results. This antenna design is suitable for X-Band applications, including military, satellite communications, and biomedical fields.

FATIGUE CRACK GROWTH MONITORING OF CRACKED ALUMINUM PLATE REPAIRED WITH COMPOSITE PATCH USING EMBEDDED OPTICAL FIBER SENSORS (광섬유센서를 이용한 복합재 패치수리된 알루미늄판의 균열관찰)

  • 서대철;이정주;김상훈
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.250-253
    • /
    • 2001
  • Recently, based on the smart structure concept, optical fiber sensors have been increasingly applied to monitor the various engineering and civil structural components. Repairs based on adhesively bonded fiber reinforce composite patches are more structurally efficient and much less damaging to the parent structure than standard repairs based on mechanically fastened metallic patches. As a result of the high reinforcing efficiency of bonded patches fatigue cracks can be successfully repaired. However, when such repairs are applied to primary structures, it is needed to demonstrate that its loss can be immediately detected. This approach is based on the "smart patch" concept in which the patch system monitors its own health. The objective of this study is to evaluate the potentiality of application of transmission-type extrinsic Fabry-Perot optical fiber sensor (TEFPI) to the monitoring of crack growth behavior of composite patch repaired structures. The sensing system of TEFPI and the data reduction principle for the detection of crack detection are presented. Finally, experimental results from the tests of center-cracked-tension aluminum specimens repaired with bonded composite patch is presented and discussed.

  • PDF