• Title/Summary/Keyword: 패널강성

Search Result 94, Processing Time 0.017 seconds

Structural Behavior of Reinforced Concrete Members Subjected to Axial and Blast Loads Using Nonlinear Dynamic Analysis (비선형 동적해석을 이용한 축하중과 폭발하중을 동시에 받는 철근콘크리트 부재의 구조 거동 분석)

  • Lee, Seung-Hoon;Kim, Han-Soo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.3
    • /
    • pp.141-148
    • /
    • 2022
  • In this study, the structural behavior of reinforced concrete members under simultaneous axial and blast loads was analyzed. Nonlinear dynamic analysis verification was performed using the experimental data of panels under fundamental blast load as well as those of reinforced concrete columns subjected to axial and blast loads. Because Autodyn is a program designed only for dynamic analysis, an analysis process is devised to simulate the initial stress state of members under static loads, such as axial loads. A total of 80 nonlinear dynamic finite element analysis procedures were conducted by selecting parameters corresponding to axial load ratios and scaled distances ranging 0%~70% and 1.1~2.0 (depending on the equivalent of TNT), respectively. The structural behavior was compared and analyzed with the corresponding degree of damage and maximum lateral displacement through the changes in axial load ratio and scaled distance. The results show that the maximum lateral displacement decreases due to the increase in column stiffness under axial loads. In view of the foregoing, the formulated analysis process is anticipated to be used in developing blast-resistant design models where structural behavior can be classified into three areas considering axial load ratios of 10%~30%, 30%~50%, and more than 50%.

Maximum Shear Modulus of Sand - Tire Chip Mixtures under Repetitive KO Loading Conditions (반복하중 재하 시 모래-타이어칩 혼합토의 최대전단탄성계수 변화)

  • Ryu, Byeonguk;Park, Junghee;Choo, Hyunwook
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.12
    • /
    • pp.41-50
    • /
    • 2021
  • This study investigated the changes in engineering characteristics of sand-tire chip mixtures during repetitive loading. To quantify the changes in the maximum shear modulus according to the tire chip content in the mixtures and the particle size ratio between sand particle and tire chip, the samples were prepared with tire chip content of TC = 0, 10, 20, 40, 60, and 100%, and the particle size ratios SR were also set to be SR = 0.44, 1.27, 1.87, and 4.00. The stress of the prepared sample was applied through a pneumatic cylinder. The experiment was conducted in the order of static loading (= 50 kPa), cyclic loading (= 50-150 kPa), static loading (= 400 kPa) and unloading. The stress applied to tested mixtures was controlled by a pressure panel and a pneumatic valve by using an air compressor. The shear wave velocity was measured during static and cyclic loadings by installing bender elements at the upper and lower caps of the mold. The results demonstrated that the change in maximum shear modulus of all tested materials with varying SR during repetitive loading is the most significant when TC ~ 40%. In addition, the mixture with smaller SR at a given TC shows greater increase in maximum shear modulus during repetitive loading.

A Rigorous Examination of the Interplay Between Fire Resistance of 1-Hour Rated Fireproof Steel Walls and the Flexural Strength of Individual Panels (1시간 내화구조용 철강재 벽체의 내화성능과 단위 패널 휨강도의 관계 고찰)

  • Jeon, Soo-Min;Ok, Chi-Yeol;Kang, Sung-Hoon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.5
    • /
    • pp.537-546
    • /
    • 2023
  • For the purpose of fire delineation within buildings, steel walls in Korea are mandated to undergo rigorous certification as fire-resistant entities, substantiated via a series of qualitative assessments. Predominantly, these evaluations comprise the fire resistance test paired with supplementary examinations; specifically for steel walls, these encompass the gas hazard and panel bending strength tests. Given the prevalence of semi-noncombustible core materials, gas hazard tests are largely rendered superfluous, pivoting the focus solely onto the panel bending strength test during the certification trajectory. This particular test is designed to gauge the flexural robustness of individual wall panels. An enhanced bending strength is postulated to fortify both the structural integrity and thermal insulation of the wall by mitigating potential deformations. In this scholarly exploration, an analytical deep dive was undertaken into extant, valid certification test datasets. The endeavor aimed to ascertain the depth of correlation between the designated fire resistance metric and the bending strength, the latter being the sole supplementary assessment for steel walls. In distilling the findings, it was discerned that temperature elevations beyond baseline values exhibited no statistically salient linkage with the panel's bending strength.

Distribution of Agalmatolite Mines in South Korea and Their Utilization (한국의 납석 광산 분포 현황 및 활용 방안)

  • Seong-Seung Kang;Taeyoo Na;Jeongdu Noh
    • The Journal of Engineering Geology
    • /
    • v.33 no.4
    • /
    • pp.543-553
    • /
    • 2023
  • The current status of domestic a agalmatolite mines in South Korea was investigated with a view to establishing a stable supply of agalmatolite and managing its demand. Most mined agalmatolite deposits were formed through hydrothermal alteration of Mesozoic volcanic rocks. The physical characteristics of pyrophyllite, the main constituent mineral of agalmatolite, are as follows: specific gravity 2.65~2.90, hardness 1~2, density 1.60~1.80 g/cm3, refractoriness ≥29, and color white, gray, grayish white, grayish green, yellow, or yellowish green. Among the chemical components of domestic agalmatolite, SiO2 and Al2O3 contents are respectively 58.2~67.2 and 23.1~28.8 wt.% for pyrophyllite, 49.2~72.6 and 16.5~31.0 wt.% for pyrophyllite + dickite, 45.1 and 23.3 wt.% for pyrophyllite + illite, 43.1~82.3 and 11.4~35.8 wt.% for illite, and 37.6~69.0 and 19.6~35.3 wt.% for dickite. Domestic agalmatolite mines are concentrated mainly in the southwest and southeast of the Korean Peninsula, with some occurring in the northeast. Twenty-one mines currently produce agalmatolite in South Korea, with reserves in the order of Jeonnam (45.6%) > Chungbuk (30.8%) > Gyeongnam (13.0%) > Gangwon (4.8%), and Gyeongbuk (4.8%). The top 10 agalmatolite-producing mines are in the order of the Central Resources Mine (37.9%) > Wando Mine (25.6%) > Naju Ceramic Mine (13.4%) > Cheongseok-Sajiwon Mine (5.4%) > Gyeongju Mine (5.0%) > Baekam Mine (5.0%) > Minkyung-Nohwado Mine (3.3%) > Bugok Mine (2.3%) > Jinhae Pylphin Mine (2.2%) > Bohae Mine. Agalmatolite has low thermal conductivity, thermal expansion, thermal deformation, and expansion coefficients, low bulk density, high heat and corrosion resistance, and high sterilization and insecticidal efficiency. Accordingly, it is used in fields such as refractory, ceramic, cement additive, sterilization, and insecticide manufacturing and in filling materials. Its scope of use is expanding to high-tech industries, such as water treatment ceramic membranes, diesel exhaust gas-reduction ceramic filters, glass fibers, and LCD panels.