• Title/Summary/Keyword: 판 거동 모델

Search Result 179, Processing Time 0.021 seconds

Evaluation of The Nonlinear Seismic Behavior of a Biaxial Hollow Slab (2방향 중공슬래브 구조시스템의 비선형 지진거동 평가)

  • Park, Yong-Koo;Kim, Hyun-Su;Ko, Hyun;Park, Hyun-Jae;Lee, Dong-Guen
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.1
    • /
    • pp.1-10
    • /
    • 2011
  • Recently, there has been an increased interest in the noise isolation capacity of floor slabs, and thus an increase of slab thickness is required. In addition, long span floor systems are frequently used for efficient space use of building structures. In order to satisfy these requirements, a biaxial hollow slab system has been developed. To verify the structural capacity of a biaxial hollow slab system, safety verification against earthquake loads is essential. Therefore, the seismic behavior of a biaxial hollow slab system has been investigated using material nonlinear time history analyses. For efficient time history analyses, the equivalent plate element model previously proposed was used and the seismic capacity of the example structure having a biaxial hollow slab system has been evaluated using the nonlinear finite element model developed by the equivalent frame method. Based on analytical results, it has been shown that the seismic capacity of a biaxial hollow slab system is not worse than that of a flat plate slab system with the same thickness.

Analysis of Probability and Extended Life Cycle of Strengthened Bridge Deck (성능향상된 교량 바닥판의 확률론적 해석 및 수명연장 분석)

  • Sim, Jong-Sung;Oh, Hong-Seob;Choi, Jang-Whan;Kim, Eon-Kyoung
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.5
    • /
    • pp.635-642
    • /
    • 2003
  • Although the strengthening effect of deteriorated concrete bridge decks has been studied by various authors, most researches are focused on the experimental works on the pulsating loading in laboratory in spite of deterioration of deck caused by moving vehicle loads. In this research, a theoretical live load model that was proposed to reflect an effect of moving vehicle loads is formulated from a statistical approach on the measurement of real traffic loads for various time periodsin Korea. Fatigue life and strengthening effect of strengthened bridge decks strengthened with either Carbon Fiber Sheet or Grid typed Carbon Fiber Polymer Plastic by the probabilistic and the reliability analyses are assessed. As a results, secondary bridge deck (DB18) strengthened with FRP ensures a sufficient fatigue resistance against the increased traffic loads as well as load carrying capacity in life cycle.

A Study on Manufacturing and Experimental Techniques for the 1/5th Scale Model of Precast Concrete Large Panel Structure (프리캐스트 콘크리트 대형판 구조물의 1/5축소모델 제작 및 실험기법 연구)

  • 이한선;김상규
    • Magazine of the Korea Concrete Institute
    • /
    • v.8 no.2
    • /
    • pp.139-150
    • /
    • 1996
  • The objective of this study is to provide the information on the manufacturing and exper- , ructures. imental techniques of small scale modeling of precast concrete(P.C.) large panel :-t The ad~~pted scale was one-fifth. 4 types of experiments were performed : nlaterial tests for model concrete and model reinforcement, compressive test of horizontal joint, shear test of vertical joint and cyclic static test of 2-story subassemblage structure. Based on the experimental results, the following conclusions are drawn : i 1) Model concrete had in general larger compressive strength than expected. (2) Model reinforcement showed less ductility if the annealing processes were performed without using vaccuum tube. 131 Failure niotles of horizontal and vertical joints were almost same for both prototype and model. But the strength of model appears to be higher than required by similitude law. (41 Hysteretic behavior of 1 /T, scale subassemblage model can be made quite similar to that of prototype if the ductility of model reinforcement and compressive strength of model concrete could be representative of those of prototype.

Estimation of Dynamic Response of Advanced Composite Material Decks for Bridges Application under Various Vehicle Driving Velocities (복합재료 교량 바닥판의 주행속도에 따른 동적응답 평가)

  • 천경식;장석윤
    • Composites Research
    • /
    • v.16 no.6
    • /
    • pp.23-32
    • /
    • 2003
  • Applications of advanced composite material in construction field are tending upwards and development of all composite material bridges is making progress rapidly in home and abroad due to their high strength to weight ratio. This paper formulated the dynamic responses of the laminated composite structures subjected to moving load and analyzed the various dynamic behaviors using the finite element method. The nondimensionalized natural frequencies of a simply supported square-laminated composite plate are considered for verifications. Mode superposition and Newmark direct integration method are applied for moving load analysis. For structural models, dynamic magnification factor calculated for various velocities of the moving load and displacements characteristics of laminated composite structures due to the moving load are investigated theoretically Numerical results are presented to study the effects of lamination scheme, stacking sequence, and fiber angle for laminated composite structures during moving load. The various results on moving load and lamination through numerical analysis will present an important basic data for development and grasp the behavior of all composite material bridges.

Bending Assessment of Antisymmetric Angle-ply Composite Sandwich Plates with Various Shear Deformation Functions (전단변형함수에 따른 역대칭 앵글-플라이 복합면재를 갖는 샌드위치판의 휨거동 평가)

  • Park, Weon-Tae;Chun, Kyoung-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.11
    • /
    • pp.5347-5356
    • /
    • 2011
  • In this paper, we compared various shear deformation functions for modelling anti-symmetric composite sandwich plates discretized by a mixed finite element method based on the Lagrangian/Hermite interpolation functions. These shear deformation theories uses polynomial, trigonometric, hyperbolic and exponential functions through the thickness direction, allowing for zero transverse shear stresses at the top and bottom surfaces of the plate. All shear deformation functions are compared with other available analytical/3D elasticity solutions, As a result, reasonable accuracy for investigated problems are predicted. Particularly, The present results show that the use of exponential shear deformation theory provides very good solutions for composite sandwich plates.

Advanced Idealized Structural Units Considering the Excessive Tension-Deformation Effects (과도 인장변형효과를 고려한 개선된 이상화구조요소)

  • Jeom-K. Paik
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.30 no.3
    • /
    • pp.100-115
    • /
    • 1993
  • In this paper, the extent of use of three kinds of the existing idealized structural units, namely the idealized beam-column unit, the idealized unstiffened plate unit and the idealized stiffened plate unit, is expanded to deal with the excessive tension-deformation effects, in which a simplified mechanical model for the stress-strain relation of steel members under tensile load is suggested. The 1/3-scale hull model for a leander class frigate under sagging moment tested by Dow is analyzed, and it is shown that the excessive tension-de-formation is a significant factor affecting the progressive collapse behavior, particularly in the post-collapse range.

  • PDF

Analytical Study on the Prying Action Force and Axial Tensile Stiffness of High-Strength Bolts Used in an Unstiffened Extended End-Plate Connection (비보강 확장단부판 접합부에 체결된 고장력볼트의 지레작용력 및 축방향 인장강성에 대한 해석적 연구)

  • Kim, Hee Dong;Yang, Jae Guen;Lee, Hyung Dong
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.2
    • /
    • pp.251-260
    • /
    • 2015
  • The end plate connection is applied to beam-column moment connections in various forms. Such end plate connection displays changes in the behavioral characteristics, strength and stiffness, and energy dissipation capacity based on the thickness and length of the end plate, the number and diameter of the high strength bolt, the gauge distance of the high strength bolt, prying action force of the high strength bolt, and dimensions and length of the welds. Accordingly, this study has apprehended the axial tensile stiffness and prying action force of the high strength bolt connected on the tensile side based on the difference in thickness of the end plate, and was conducted to propose an analysis model for the prediction of such variables that affect the operating properties of the end plate. To achieve this, this study has conducted a three-dimensional non-linear finite-element analysis of the unstiffened expanding end plate connection by selecting only the thickness of the end plate as the variable.

Prediction and Evaluation of Progressive Failure Behavior of CFRP using Crack Band Model Based Damage Variable (Crack Band Model 기반 손상변수를 이용한 탄소섬유강화 복합재료 적층판의 점진적 파손 거동 예측 및 검증)

  • Yoon, Donghyun;Kim, Sangdeok;Kim, Jaehoon;Doh, Youngdae
    • Composites Research
    • /
    • v.32 no.5
    • /
    • pp.258-264
    • /
    • 2019
  • In this paper, a progressive failure analysis method was developed using the Hashin failure criterion and crack band model. Using the failure criterion, the failure initiation was evaluated. If the failure initiation is occurred, the damage variables at each failure modes (fiber tension & compression, matrix tension & compression) was calculated according to linear softening degradation behavior and the variables are used to derive the damaged stiffness matrix. The damaged stiffness matrix is reflected to damaged material and the progressive failure analysis is continued until the damage variables to be 1 that complete failure of material. A series of processes were performed using FE commercial code ABAQUS with user defined material subroutine (UMAT). To evaluate the proposed progressive failure model, the experimental results of open hole composite laminate tests was compared with numerical result. Using digital image correlation system, the strain behavior also was compared. The proposed numerical results were coincided well with the experimental results.

Nonlinear Finite Element Analysis of Foundation with Shear Reinforcements on the Ground (전단보강된 기초의 지반에서의 거동해석)

  • Yi, Waon-Ho;Lee, Yong-Jae;HwangBo, Seok;Yang, Won-Jik;Heo, Kab-Soo;Jin, Seong-Chan
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.615-618
    • /
    • 2011
  • 최근 건설공사에서 많은 물량이 투입되는 기초구조의 자재비 및 원가절감을 위해 여러 가지 기초구조시스템이 개발되고 있으나, 보편적으로 현장에 적용하기에는 다소 무리가 있는 것으로 지적받고 있다. 본 연구는 강판을 ㄷ자형으로 절곡한 기초전단보강시스템을 개발하기 위한 해석적 연구의 일환으로 진행되었다. 현행 전단머리 보강식에서는 기초판에 대한 전단내력 산정을 위한 기준식이 마련되어 있지 않으며 플랫플레이트 슬래브의 기준식에 따르도록 되어져있다. 그러나 기초판은 지반에 지지되는 구조물로 플랫플레이트 슬래브와는 경계조건이 다르다. 따라서 본 연구에서는 지반에 지지된 경우와 플랫플레이트 슬래브와 같이 모멘트 제로지점을 단순지지한 형태로 기초구조물을 모델링하여 해석을 실시하였다. 해석프로그램은 유한 요소기법이 적용된 ABAQUS를 사용하여 두 지지조건의 차이가 구조물에 미치는 영향을 비교분석하였다.

  • PDF

Crack growth behavior in the lntegrally stiffened plates(1) -Numerical evaluation of SIF (일체형 보강판의 균열성장거동(I)-SIF의 수치해석)

  • Rhee, Hwan-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.5
    • /
    • pp.150-156
    • /
    • 1997
  • Three dimensional finite element analysis was conducted to estimate the effect of shape parameters (plate width and thickness) on the stress intensity factor for crack in the integrally stiffened plate. Analysis was done for width ratios of 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, and thickness ratios of 2, 3, 4, 6. Based on these results, an empirical equation of geometry factor is formulated as a function of crack length and thickness ratio.

  • PDF