• Title/Summary/Keyword: 파일럿분사

Search Result 30, Processing Time 0.01 seconds

Effects of Multi-stage Pilot Split Injection Strategy on Combustion and Emission Characteristics in a Single-Cylinder Diesel Engine (단기통 디젤엔진에서 다단 파일럿 분할 분사 전략이 연소 및 배기가스 특성에 미치는 영향)

  • Lee, Hyungmin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.7
    • /
    • pp.692-698
    • /
    • 2020
  • This paper examines the effects of a multi-stage pilot split injection strategy on combustion and exhaust emission factors in a single-cylinder diesel engine. One analysis noted that in the single-injection condition, the maximum in-cylinder pressure and rate of heat release were highest. The pilot injection quantity was evenly divided, showing a tendency to decrease as the number of injections increased. In another injection condition, when the multi-stage pilot split injection strategy was applied, IMEP, engine torque, and combustion increased. The COVIMEP was greatest with the lowest combustion efficiency. The combustion ability was poor. In a single injection condition, the O2 concentration in the exhaust gas was the lowest and the CO2 was the highest. When the multi-stage split injection strategy was applied, the low temperature combustion process proceeded, and the oxidation rate of CO2 decreased while the emission level increased. In a single injection condition in which a locally rich mixture was formed, the HC emission level showed the highest results. A 55.6% reduction of NOx emission occurred under a three-stage pilot injection condition while conducting a multi-stage pilot split injection strategy.

A Study on Combustion and Emission Characteristics of Diesel-DME Blended Fuels Using Pilot Injection in DICI Engine (직접분사식 압축착화엔진에서 Pilot분사에 따른 Diesel-DME 혼합연료의 연소 및 배기특성에 관한 연구)

  • Jeong, Jaehoon;Lim, Ocktaeck
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.4
    • /
    • pp.55-64
    • /
    • 2014
  • This work was investigated on pilot injection strategy of blended fuels(Diesel-DME) for combustion and emissions in a single cylinder direct injection compression ignition engine. Diesel and DME were blended by the method of weight ratio. Weight ratios for diesel and DME were 95:05 and 90:10 respectively. dSOI between main and pilot injection timing was varied. A total amount of injected fuels(single injection) was adjusted to obtain the fixed BMEP as 4.2 bar in order to compare with the fuel conditions. Also, the amount of pilot injection fuel was varied by 5%, 10% and 20% of total injection fuel. The engine was equipped with common rail and injection pressure is 700 bar at 1200 rpm. As a result, when mixing ratio increase, indicated thermal efficiency was increased in comparison with DD 100 and CO, THC and smoke were lower than DD 100. The influence of reducing NOx by pilot injection was more effective than DD 100. When pilot injection quantity increase, abrupt increase of NOx was occured at pilot injection quantity of 20%.

A Numerical Study on Effects of Pilot Injection on Combustion and Emission Characteristics in a Marine Diesel Engine (선박용 디젤 엔진에서 Pilot 분사가 연소 및 배기 특성에 미치는 영향에 관한 수치해석적 연구)

  • Bae, Myung-Jik;Han, Dong-Sik;Kim, Hyeon-Gyu;Chang, Young-Jone;Song, Ju-Hun;Jeon, Chung-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.1
    • /
    • pp.37-45
    • /
    • 2010
  • Computational simulation has been carried out to examine the effects of pilot injection to reduce both of NOx and Soot emissions in a marine diesel engine. For verification of the computational result, calculated cylinder pressure was matched to experimental pressure. In this study, the primary variables were injection timing, dwell time and injection rate while the amount of injection fuel was maintained constant. It was revealed that variation of pilot injection timing affects auto ignition and heat release rate. In the results, both of NO and soot emission were reduced without deterioration of in-cylinder pressure under the condition of $10^{\circ}$CA dwell time and 0.022kg/s injection rate.

Application of PIV technique to spray behavior characteristics study in evaporative field (증발 분무 거동특성 연구에 있어서 PIV 기법의 적용)

  • Yeom, J.K.
    • Journal of Power System Engineering
    • /
    • v.15 no.3
    • /
    • pp.5-11
    • /
    • 2011
  • 디젤기관의 경우는 종래부터 직분식이 주류를 이루었고, 근래에는 분사압력의 고압화가 진행중이다. 분사압력의 고압화에 의해 연소효율의 향상 및 배출가스중의 입자상물질(PM:Particulate Matter)의 저감을 유도하고 있으나, 연소가스의 고온화로 인해 질소산화물(NOx:Nitrogen Oxides)은 증가한다. 따라서, 분사기간의 지연(Retard)이나 파일럿분사(Pilot injection)등의 혼합기제어에 의해 질소산화물의 저감을 꾀하고 있다. 이와 같이 디젤기관에 있어서도 혼합기 형성의 최적화에 의한 연소제어를 시도하는 수법이 중시되고 있고, 이를 위해서는 디젤분무 구조에 기초한 혼합기의 형성기구에 대한 규명이 매우 중요하다. 그러므로 본 연구에서는 보다 고도의 혼합기형성 제어를 위한 기초연구로서 고온 고압장에서의 증발디젤자유분무구조를 해석하였으며, 계측영역은 연료와 주위기체와의 혼합이 활발히 진행되는 분무의 하류영역으로 설정하고, 입자화상속도측정법(particle Image Velocimetry:PIV)을 이용한 분무의 유동해석을 기초로 증발 디젤분무의 구조 해석을 행하였다. 실험조건으로서 분사압력을 72MPa, 112MPa로 각각 변화시켰다.

Fuel Injection Strategy for Optimized Performance in Heavy-Duty Diesel Engine (대형 디젤 엔진에서 최적 성능 도출을 위한 연료 분사 전략에 관한 연구)

  • Lee, Jin-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.10
    • /
    • pp.33-39
    • /
    • 2019
  • The improvement of emissions, fuel economy, and combustion noise is a primary target in the development of heavy-duty diesel engines. Multiple injection has been introduced as one of the most promising strategies for this goal. In this research, various multiple injection methods were applied to achieve the optimal strategy in terms of emissions, fuel economy, and combustion noise. In the case of one pilot injection, the smoke emission deteriorated, while the NOx emission was reduced. In the case of 2 pilot injections, the NOx and smoke emissions were reduced by 73% and 84%, respectively. In this case, the combustion noise was analyzed with the maximum pressure-rise rate, and the fuel economy was evaluated with the help of the indicated specific fuel consumption. A 15%:15% 2-pilot injection strategy accomplished improvements of 32.9% for NOx, 60.4% for smoke, 1.95% for fuel consumption, and 19.4% for combustion noise compared to the case of single injection. Based on the data, an optimal injection strategy will be developed for a greater operating range in future work.

Characteristics of the Spray Development with Diesel Fuel Temperatures (디젤 연료 온도에 따른 분무 발달 특성)

  • Lee, Jin-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.3
    • /
    • pp.270-275
    • /
    • 2016
  • The characteristics of the fuel quantity, injection rate and macro spray development was investigated under a range of diesel fuel temperatures. The actual injection quantity decreased despite the same signal of the injection start and injection duration as the fuel temperature decreased. The injection rate measurements confirmed that the actual injection commencement was delayed and the actual injection duration was shortened under lower fuel temperature conditions, which explains why the injection quantity decreased. Spray tip penetration with a lower fuel temperature was longer than that with a higher fuel temperature due to the deteriorated atomization. As a pre-test for the combustion experiment under low temperature conditions, piston targeting with pilot injection was accomplished, which showed that the fuel droplet from pilot injection was introduced into the crevice area. This suggests that the pilot injection quantity and timing should be chosen with careful consideration for actual applications.

Improment of Diesel Combustion using multiple injection under Cold Start Condition (냉시동 조건에서 디젤 연소 특성 및 연소 개선에 대한 연구)

  • Lee, Haeng-Soo;Lee, Jin-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.711-717
    • /
    • 2017
  • Startability and harmful emissions are the main issues in diesel engine development under cold conditions. The characteristics of combustion with multiple injection were investigated under cold start conditions. For quantitative analysis, the in-chamber pressure profile was measured and combustion visualization using direct imaging was accomplished. With multiple injection, the peak in-chamber pressure and heat release rate were increased compared to single injection. In addition, the period of flame luminosity detection was shortened using multiple injection. Combustion by main injection was improved with an increase in heat released by pilot combustion when the pilot injection quantity was increased. Finally, an increase in injection pressure also showed the possibility of combustion improvement. On the other hand, an increase of in the pilot injection quantity and injection pressure can cause an increase in harmful emissions, such as HC and CO due to wall wetting. Therefore, more sensitive calibration will be needed when applying a multiple injection strategy under cold start conditions.

The Effect of Triple Injection on Engine Performance and Emissions in a HSDI Diesel Engine (3중분사가 HSDI 디젤엔진의 성능과 배기에 미치는 영향)

  • Choi, Wook;Park, Cheol-Woong;Kook, Sang-Hoon;Bae, Choong-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.5
    • /
    • pp.40-57
    • /
    • 2004
  • The effects of triple (pilot, main and after) injection on combustion and emission characteristics in a HSDI (High-Speed Direct Injection) diesel engine were investigated using a single-cylinder optical diesel engine equipped with a common-rail injection system. The pilot injection affected the spray and combustion evolution of the following main injection. It was found that the pilot injection reduced the ignition delay, which led to lowered NOx (Nitric Oxides) level, and increased IMEP (Indicated Mean Effective Pressure) due to slow combustion pace during an expansion stroke. The after-injection was shown to be effective in reducing PM (Particulate Matter) even when a small amount of fuel was added. The results suggest that a proper combination of individual injection strategy could bring about a good synergetic effect on engine performance and emission.

An Investigation about Combustion and Emission Characteristics for Pilot Injection Timing on Partially Premixed Charge Combustion Ignition Engine Fueled with DME (파일럿 분사시기에 따른 DME 부분 예혼합 압축착화 엔진의 연소 및 배기특성에 관한 연구)

  • Jeong, Jaehoon;Lim, Ocktaeck;Pyo, Youngduck;Lee, Youngjae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.3
    • /
    • pp.43-49
    • /
    • 2013
  • This work investigated the effects of engine speed and injection timing on combustion and emissions characteristics in a partially premixed charge compression ignition (pPCCI) engine fueled with DME. pPCCI engine especially has potential to achieve more homogeneous mixture in the cylinder, which results in lower NOx and smoke emission. In this study single cylinder engine was equipped with common rail and injection pressure is 700 bar. Total injected fuel mass is 64.5 $mm^3$ per cycle. The amount of pilot injection of the entire injection 12.5% is tested. Results show that NOx emission is decreased while IMEP is increased as the retard of injection timing. Besides, NOx emissions are slightly rised as well as IMEP is increased with the increase of engine speed.

Effects of Pilot Injection on Low Temperature Diesel Combustion (파일럿 분사가 저온 디젤 연소에 미치는 영향)

  • Han, Sang-Wook;Bae, Choong-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.3
    • /
    • pp.141-147
    • /
    • 2012
  • A direct injection diesel engine with large amount of exhaust gas recirculation was used to investigate low temperature diesel combustion. Pilot injection strategy was adopted in low temperature diesel combustion to reduce high carbon monoxide and hydrocarbon emissions. Combustion characteristics and exhaust emissions of low temperature diesel combustion under different pilot injection timings, pilot injection quantities and injection pressures were analyzed. Retarding pilot injection timing, increasing pilot injection quantity and higher injection pressure advanced main combustion timing and increased peak heat release rate of main combustion. As a result of these strategies, carbon monoxide and hydrocarbon emissions were reduced. Soot emission was slightly increased with retarded pilot injection timing while the effect of pilot injection on nitrogen oxides emission was negligible under low combustion temperature condition. Spatial distribution of fuel from the spray targeting visualization was also investigated to provide more insight into the reason for the reduction in carbon monoxide and hydrocarbon emissions.