• Title/Summary/Keyword: 파일공사소음

Search Result 6, Processing Time 0.018 seconds

Estimating of Optimal Allowed Distance for Reducing Vibration and Noise Problems by Pile Driving after Drilling Method in Deep Foundation Work (천공 후 말뚝타격공법의 진동 $\cdot$ 소음 문제 해소를 위한 적정 이격거리 산정 방안 연구)

  • Park Hong-Tae;Kang Lee-Seok
    • Korean Journal of Construction Engineering and Management
    • /
    • v.6 no.4 s.26
    • /
    • pp.152-163
    • /
    • 2005
  • Pile driving work causes a vibration problem in the construction site using pile foundation and often causes civil affairs by construction noise around the construction site. For the vibration and noise problems, the driving after drilling method rather than the direct driving method is being generalized for reducing vibration and noise. However, this method also causes civil affairs when the driving work is operated in adjacent area. This study suggests a criterion for evaluating an optimal allowed distance for pile driving work by the driving after drilling method. Actual surveys of vibration and noise for pile driving work in seven construction sites were used for developing regression analysis equations. The results can be a standard to estimate the allowed distance to avoid vibration and noise problems in pile driving work for deep foundation.

A Study on the Characteristics of Construction Work Noise by SDA Method (SDA공법에 의한 건설작업소음의 특성에 대한 연구)

  • Kim Su-Yong;Yang Jae-Hun;Kim Myung-Jun
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2004.11a
    • /
    • pp.203-209
    • /
    • 2004
  • Construction work noise has caused much annoyance for a number of dwellers nearby construction field and has become a very serious issue in our living environment. Therefore, practical solutions for reducing construction work noise are highly required in construction field. Practical solutions for the construction work noise, however, are very difficult because of the poorness of basic data and research. Especially, in order to establish a sound insulation plan about pilings work noise that has highly sound pressure level and impactive, it is necessary to investigate the characteristics of construction noise such as pilings work noise, mechanical operating noise, etc. Accordingly, the aim of this study is to get the basic data about construction noise by SDA(Separated Doughnut Auger) method. And in this study, we attempt to survey the characteristics of attenuation and propagation of construction equipment noise and to estimate the power level in pilings work, using SDA method.

  • PDF

Effect of the Piling Work Noise on the Behavior of Snakehead (Channa argus) in the Aquafarm (양식 가물치 (Channa argus)의 행동에 미치는 파일작업 소음의 영향에 관한 연구)

  • SHIN Hyeon Ok
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.28 no.4
    • /
    • pp.492-502
    • /
    • 1995
  • This paper describes the relationship between the behavior of the snakehead ( Channa arps) of 44cm long and the environmental noise levels due to the piling work. The experiment is conducted in the aquafarm located near Asan lake, Pyongtaek in 1993. The fish trajectory is obtained by a biotelemetry system in which a pulsed ultrasonic pinger attached onto the dorsal is tracked three dimensionally, and the noise and the vibration levels both in air and in water are measured. The results of this study are as follows: 1) The noise levels in water and in air and the vibration level measured at a distance of 90m from the noise source, increased by 36.5dB $(re\;l{\mu}Pa)$, 2308$(re\;0.0002{\mu}bar)$ and $5.9{\mu}m$ repectively compared to the levers before piling. 2) The highest variation of the swimming speed was observed right after the piling works and the width of variation decreased with the elapsed time. The average speeds of the fish before and during the works were measured as 0.8 times and 1.1 times of the body length, respectively. 3) It is found that the fish escapes into the mud of the aquafarm when a heavy shock wave occurred. Consequently, the heavy shock by the piling works could produce a considerably unfavorable effect to the fish.

  • PDF

Behavior Characteristics of Micropile Following the Embedded Condition (근입조건에 따른 마이크로파일의 거동특성)

  • Bang, Seongtaek
    • Journal of the Korean GEO-environmental Society
    • /
    • v.21 no.6
    • /
    • pp.19-25
    • /
    • 2020
  • In the recent downtown works, there are frequent cases where the work on existing piles is impossible due to the influence from lack of space and surrounding environment. In such cases, there has been growing cases of using the micropile method that is available to work with the small equipment and asserts the bearing capacity of the existing piles. The micropile method is a type of drilled shaft with the diameter of a pile to be around 75 mm~300 mm that, even for a case where it has certain surrounding structure, foundation and spatial obstacle, there is almost no work difficulty and the work is feasible under all types of soil conditions. In addition, the work can be done in places where the ceiling of the building is low with less vibration and noise in the work process that such method is significantly used for foundation reinforcement of existing buildings. With respect to the motion characteristics that are changed depending on the foundational characteristics or when the micropile is applied with compression or tensile force, there is very few studies conducted. Therefore, under this study, through the data analysis of the field loading test regarding the micropile worked in the fields, it clarifies the settlement and characteristics of bearing capacity following the embedded condition of the ingredients and piles that consist the foundation if the compression and tensile force are applied to the micropile, and by facilitating the statistical analysis program, SAS, to carry out the analysis on the main elements influencing on settlement of the micropile and bearing capacity.

Estimation of Bearing Capacity for In-Situ Top-Base Method by Field Experimental Plate Load Test (현장평판재하시험에 의한 현장타설형 팽이말뚝기초의 지지력산정)

  • Shin, Eun-Chul;Ahn, Min-Hye
    • Journal of the Korean Geosynthetics Society
    • /
    • v.10 no.1
    • /
    • pp.1-8
    • /
    • 2011
  • The problems like a deterioration of loading bearing capacity, an exaggeration of settlement and lateral deformation are able to be generated, meanwhile structures are built in soft ground. Top-Base method is belonged to a rigidity mat foundation method which is used to surface treatment of soft ground. This method makes an effect to increase the bearing capacity of foundation using friction force, and prevent the differential settlement. Further more, the In-Situ Top-Base method has advantages in the phase of economic effect by reduction of the construction cost and offers an expediency on construction comparing with precast products. This paper presents the way of the estimation of bearing capacity for In-Situ Top-Base method through field plate load test in soft ground. It utilizes the results to a future design by analyzing the properties in the existing study and designs through these analysis and calculating the top-base method's reasonable range.

Influence of Pile Driving-Induced Vibration on the Adjacent Slope (파일 항타진동이 인접 비탈면에 미치는 영향)

  • Kwak, Chang-Won
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.5
    • /
    • pp.27-40
    • /
    • 2023
  • A pile is a structural element that is used to transfer external loads from superstructures and has been widely utilized in construction fields all over the world. The method of installing a pile into the ground should be selected based on geotechnical conditions, location, site status, environmental factors, and construction costs, among others. It can be divided into two types: direct hammering and preboring. The direct hammering method installs a pile into the bearing layer, such as rock, using a few types of hammer, generating a considerable amount of pile driving-induced vibration. The vibration from pile driving influences adjacent structures and the ground; therefore, quantitatively investigating the effects of vibration is inevitably required. In this study, two-dimensional dynamic numerical modeling and analysis are performed using the finite difference method to investigate the influence on the adjacent slope, including temporary supporting system. Time-dependent loading induced by pile driving is estimated and used in the numerical analysis. Consequently, large surface displacement is estimated due to surface waves and less wave deflection, and refraction at the surface. The total displacement decreases with the increase of the distance from the source. However, lateral displacement at the top of the slope shows a larger value than vertical displacement, and the overall displacement tends to be concentrated near the face of the slope.