• Title/Summary/Keyword: 파이프 굽힘

Search Result 19, Processing Time 0.023 seconds

Optimum Structural Design of Pipe Loops Used in Large Vessels(I) (대형 선박의 파이프 루프 최적구조설계(I))

  • Park, Chi-Mo;Jang, Dae-Oh;Han, Sam-Duck
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.5
    • /
    • pp.47-54
    • /
    • 2007
  • Ship structures are subject to severe environmental loads causing appreciable hull girder deflection which in turn affects the piping system attached to the main hull in the form of displacement load. While this load may cause failure in the pipes, loops have been widely adopted as a measure of preventing this failure with the idea that they may lower the stress level in a pipe by absorbing some portion of the displacement load. But as the loops also have some negative effects such as causing extra manufacture cost, deteriorating the function of the pipe and occupying extra space, the number and the dimensions of the loops adopted need to be minimized. This research develops a design formula for pipe loops. The accuracy of the proposed design formula was verified by comparing two results respectively obtained by the proposed formula and MSC/NASTRAN. The paper ends with the sample example showing the efficiency of the proposed formula.

The Development of Design Formulas for Pipe Loops Used in Large Vessels(II) (대형 선박의 파이프 루프 설계식 개발(II))

  • Park, Chi-Mo;Yang, Park-Dal-Chi;Lee, Jong-Hoon
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.1
    • /
    • pp.158-163
    • /
    • 2009
  • Many longitudinal pipes in ships are subject to considerable loads, caused by hull girder bending in the ships and/or thermal loads in some special pipes through which fluids with highly abnormal temperatures are conveyed. As these loads may cause failure in the pipes or their supporting structures, loops have been widely adopted to prevent such failure, based on the idea that they can lower the stress level in a pipe byabsorbing some portion of these loads. But as the loops also have some negative effects, such as causing extra manufacturing cost, deteriorating the function of the pipe, and occupying extra space, the number and dimensions of these loops need to be minimized. This research developed design formulas for pipe loops, modeling them as a spring element, for which the axial stiffness is calculated based on the beam theory, incorporating the flexibility effect of the straight portion of the pipe. The accuracy of the proposed design formulas was verified by comparing two results obtained from the proposed formulas and MSC/NASTRAN. This paper concludes with a sample application of the proposed formulas, showing their efficiency.

The Equations of Motion for the Stretcthing, Bending and Twisting of a Marine Pipeline Containing Flowing Fluids (내부 유체 유동을 포함한 해저 파이프 라인의 인장 굽힘 비틀림 운동 방정식)

  • 서영태
    • Journal of Ocean Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.151-156
    • /
    • 1994
  • The equations of motion of a submarine pipeline with the internal flowing fluid and subject to hydrodynamic loadings are derived by using Hamilton's principle. Coupling between the bending and the longitudinal extension due to axial load and thermal expansion are considered. Coupling between the twisting and extension are not considered. The equations of motion are well agreed with the results which are derived by the vector method.

  • PDF

A Study on the Mechanical Behaviour of Steel-basalt Composite Pipe (철강-현무암 복합재료 파이프의 역학적 거동에 관한 연구)

  • Kim, Jong-Do;Wang, Jee-Seok;Yoon, Hee-Jong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.4
    • /
    • pp.401-409
    • /
    • 2007
  • Because of the various excellent characteristics of cast basalt materials. such as, anti-corrosion, anti-wearing, good hardness. high chemical stability, of which steel may not possess, the steel-basalt composite pipes are used in severe environments for compensating the defects of steel. However. without sufficient mechanical investigation prior to application. the basalt liners in steel-basalt composite pipes may be cracked and broken or the basalt liners are omitted from steel pipes in applications. In these cases, the merits of basalt materials may disappear and the basalt liners may not play their good roles as expected. Therefore, it is required that mechanical behavior of steel-basalt composite pipes and surrounding environments be fully examined before installation. The limit of bending moment with which steel-basalt composite pipe may safely endure is calculated and the limit curvature of the composite pipe in the safe range is presented in this paper. The temperature distributions and the thermal stresses are also computed and the limit difference of temperatures between inner and outer side of composite pipe is given together.

Development of Bending Machine with High Efficiency and Precision Forming (고효율 배관용 정밀성형 벤딩머시인 개발)

  • Mun, Sang-Don
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.1
    • /
    • pp.7-14
    • /
    • 2011
  • Soft copper tube is one of the popular materials which are used for shipbuilding, automobiles, and freezing and HVAC equipment. However, these materials have problems that they cause occasionally outside wrinkle, spring back, wall thinning phenomena. In this study, to avoid these phenomena, was manufactured a mild materials devoted bending machine, which selected a bending method where the mandrel presses the pipe along with the sliding guide rail during bending process. During the course of confirming this performance, it was found that as the diameter of copper tube used for materials became smaller, the spring back phenomenon increased. And as the bending angle became larger, it became larger. In addition, we could manufacture mold products which scarcely generated wrinkle when bending copper tubes.

A study on the excavation rate of directional drilling using finite element method (유한요소법을 이용한 방향성 시추의 굴진율 연구)

  • Jung, Tae Joon;Shin, Younggy
    • Plant Journal
    • /
    • v.17 no.3
    • /
    • pp.42-46
    • /
    • 2021
  • The equation of motion of the drill string along the excavation trajectory was analyzed using the Lagrangian approach together with the finite element method (FEM). A drill string of circular cross section is constructed by combining a plurality of circular axes each having 12 degrees of freedom (DOF). FEM analysis can observe the vibration and dynamic changes of the entire drill string, and it is easy to apply comprehensive boundary conditions to reproduce the simulation of a realistic drill string. In this study, the constructed FEM motel was simulated. In order to apply the FEM program to the actual drill trajectory, the dynamic analysis of the curved beam was verified by comparison with the actual values. The dynamic change over time was observed.

A Study on Development of One-Piece Manufacturing Process for Automotive Cowl Cross Bar (자동차용 카울크로스바의 일체화 성형 공정 개발에 관한 연구)

  • Kim, Hong-Seok;Youn, Jae-Woong
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.12
    • /
    • pp.275-281
    • /
    • 2017
  • The automobile cowl cross bar which is a backbone frame part inside the cockpit module has been designed with more complex geometries recently due to demands of its enhanced functions and reduced weight of car. The traditional manufacturing process using welding between tubes with different diameters shows several problems such as poor mechanical characteristics and appearance, etc. Therefore, in this study, manufacturing processes which can eliminate the welding process were developed by applying one-piece metal forming processes such as tube drawing and radial swaging. As results, it was found that the one-piece manufacturing processes give better bending strength than the traditional welding process and the swaging process shows the lowest manufacturing cost.

Development of Thin-Film Thermo-Electrochemical Cell for Harvesting Waste Thermal Energy (폐열 에너지 수집을 위한 박막형 열-전기화학전지 개발)

  • Im, Hyeongwook;Kang, Tae June;Kim, Dae Weon;Kim, Yong Hyup
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.11
    • /
    • pp.1010-1015
    • /
    • 2012
  • In this study, a thin-film thermo-electrochemical cell that directly converts waste thermal energy into electrical energy was fabricated. Electrical conductivity of conducting carbon fiber, which was used as flexible electrode, was increased through coating of carbon nanotube, and resistance of the CNT-coated fiber electrode was not changed even after bending test with various curvatures. Maximum output power of the thermocell was increased quadratically with the temperature difference, and showed a value of about 2.5 mW/kg at temperature difference of $3.4^{\circ}C$. As a result of discharge test for 12 hours, it is confirmed that the cell can operates continuously. And thin-film thermocell wrapped around a pipe with hot liquid flowing within was demonstrated. Internal resistance of the cell was decreased with various curvature of heat pipe, and maximum output power was increased by 30 %. Therefore, the cell can be applied to various heat source.

Construction of Vehicle Door Impact Beam Using Hot Stamping Technology (핫스탬핑에 의한 자동차 도어 임팩트빔의 개발)

  • Lee, Hyun-Woo;Hwang, Jung-Bok;Kim, Sun-Ung;Kim, Won-Hyuck;Yoo, Seung-Jo;Lim, Hyun-Woo;Yum, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.6
    • /
    • pp.797-803
    • /
    • 2010
  • A vehicle door impact beam made of a thin sheet of steel has been constructed using hot stamping technology with the aim of ensuring occupant safety in the event of a side collision. This technology has been used to increase the strength of the vehicle body parts and to reduce the weight of the door impact beam as well as the number of work processes. Mechanical tests were performed to determine the material properties of the hot-stamped specimen and the results of the tests were used as input data in stamping and structural simulation in order to obtain the optimal design of door impact beam. The strength of the hot-stamped door impact beam increased to a value that was 102% higher than that of conventional pipe-shaped door impact beam. A weight reduction of 34% was also achieved.