• Title/Summary/Keyword: 파의 수평운동

Search Result 47, Processing Time 0.026 seconds

Development of a Moving Body Type Wave Power Generator using Wave Horizontal Motions and Hydraulic Experiment for Electric Power Production (파의 수평운동을 이용한 가동물체형 파력발전장치의 개발과 전력생산에 관한 수리실험)

  • Hwang, Seong Su;Lee, Dong Soo;Yang, Kyong Uk;Byun, Jung Hwan;Park, Il Heum
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.28 no.2
    • /
    • pp.73-80
    • /
    • 2016
  • To reduce the mechanical energy loss and to get the high energy efficiency, an apparatus of wave power generation inducing a consistent one way rotating motion from the wave reciprocation motions was developed and the hydraulic experiments for the real electric power production were conducted and the results were discussed. In the experiments for the shape of the buoyant tank, the efficiency of the fixed 9 cm diameter type enduring the wave plate weight was 14.6% and this was the best result for all shapes. But although the free sliding type was expected to represent a high efficiency, the experiments did not show a good result as 8.5% efficiency. Therefore, the shape of buoyant tank was decided as the fixed 9 cm diameter type in the next all tests. In the experiments for the various incident waves, when the water depth was 90 cm, the average efficiencies were measured as 3.9% in the 2nd gear, 4.9% in the 3rd gear, 4.9% in the 4th gear, 12.0% in the 5th gear, 10.0% in the 6th gear, 3.1% in the 7th gear, and 3.0% in the 8th gear. Also, when the water depth was 80 cm, the average efficiency was shown as 15.0% with 5th gear condition. Therefore the high average efficiency as 13.5% was given with 80~90 cm water depth and the 5th gear in the model.

Dynamic Response Analysis of Slender Marine Structures under Vessel Motion and Regular Waves (파랑 및 부유체 운동을 고려한 세장해양구조물의 동적 거동 해석)

  • Chung Son Ryu;Michael Isaacson
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.10 no.2
    • /
    • pp.64-72
    • /
    • 1998
  • Dynamic response analysis is carried out for slender marine structures such as tensioned risers and tethers of tension leg platform, which are subjected to floating vessel motions as well as environmental forces arising from ocean waves. A mumerical analysis procedure is developed by using finite element model of the structural member. Dynamic analses are performed in the time domain for regular waves. Parameter studies are carried out to highlight the effects of surface vessel motions on the lateral dynamics of the structures. Example results of displacements, bending stresses are compared for various in water depth, environmental condition and vessel motion. Some instability conditions of the structures due to time-varying tension by vessel heave motion are discussed through the example analyses. As the results, the interaction between vessel surge and heave motions amplifies the total structural response of a riser. In the case of a tether, the effect of vessel heave motion during heavy storm is seemed to be quite significant to lateral response of the structure.

  • PDF

Transient Surge Motion of A Turret Moored Body in Random Waves (불규칙파 중에 Turret 계류된 부유체의 천이운동해석)

  • 김동준
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.3 no.2
    • /
    • pp.92-99
    • /
    • 1991
  • A moored body in the sea is subjected to second-order wave forces as well as to linear oscillatory ones. The second-order farces contain slowly-varying components, of which the characteristic frequency can be as low as the natural frequency of horizontal motions of the moored body. As a consequence, the slowly-varying force can excite unexpectedly large horizontal excursion of the body, which may cause a serious damage on the mooring system. In design analysis of Turret-type mooring system which is one of the interesting mooring systems for a floating body. the slowly-varying drift forces and the transient motion of the system during weathervaning are very important. In this paper the slowly-varying drift forces were calculated by using the Quadratic Transfer Function with considering the second order free-wave contributions. Additionaly the transient surge motion of the moored body was simulated with including the roll of the time-memory effect. In this simulation the spring constant of the spread Turret mooring system is updated at every time step for considering the nonlinear effect.

  • PDF

Slow Drift Motion Analyses for a FPSO with Spread Mooring Systems (다점 계류된 원유 저장선에 대한 저주파수 운동 해석)

  • 이호영;박종환;곽영기
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.13 no.3
    • /
    • pp.195-201
    • /
    • 2001
  • The time simulation of slow drift motions of moored FPSO in waves is presented. The equation of motion based on Cummin's theory of impulse responses are employed, and are consisted of horizontal plane motions such as surge, sway and yaw. The added mass, wave damping coefficients, first order wave exciting forces and the second order wave drift forces involved in the equations are obtained from three-dimensional panel method in the frequency domain. The mooring lines are modeled as quasi-static catenary cable. As a numerical example, time domain analyses are carried out for a box-type FPSO in long crest irregular wave condition.

  • PDF

Hydraulic Model Tests for a Pontoon-Type Floating Structure with a Horizontal Damping Plate (수평 감쇠판이 부착된 폰툰형 부유식 구조물의 수리모형실험)

  • Jeongsoo Kim;Young Taek Kim;Youn Ju Jeong
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.36 no.4
    • /
    • pp.149-157
    • /
    • 2024
  • In this study, hydraulic model tests were conducted to investigate the effect of a horizontal damping plate on the motion of the pontoon-type floating structure. The floating structures with and without the horizontal damping plates were fabricated with the scale of 1/20 and their motion responses to the regular and irregular wave conditions were investigated. From the comparison for the responses of each model with 16 wave conditions, it could be known that the damping plate made the response of the the pontoon to be smaller by about 5 to 10 % compared with the normal rectangular pontoon.

On the Surge Motion of a Ship in Rectangular Harbor (항만내 계류선박의 수평운동 해석)

  • 최항순;조일형
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.1 no.1
    • /
    • pp.81-86
    • /
    • 1989
  • Herein the surge-heave-pitch motion of a ship has been analyzed within the framework of linear potential theory. The ship is assumed slender weakly moored along the centerline of a rectangular harbor with constant depth and straight coastline. The method of matched asymptotic expansion is us-ed to obtain the leading-order solution. The ship and harbor responses to incident long waves can be re-presented in terms of Green's function, which is the solution of the Helmholtz equation satisfying necessary boundary conditions. Numerical results clearly indicate the importance of the surge motion.

  • PDF

Wave Transformation in the Intersecting Wave Trains (2방향 파랑하에서 파의 변형)

  • 김경호;조재희;윤영호
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.7 no.4
    • /
    • pp.313-320
    • /
    • 1995
  • A numerical analysis on the wave deformation in the shallow water region is performed for the case of two intersecting wave trains of the same frequency on uniformly sloping beaches. This model is based on the consideration of wave energy balance and wave action conservation, and iteratively solved the set of conservation equations of both mass and horizontal momentum. Using the computed results, the wave deformations in accordance with the variation of the parameters luck as incident wave angie and wave height in deep water which influences the variation of wave hight and mean water level under the intersecting wave trains in the shallow water region. are considered.

  • PDF

Investigation of Importance of Evanescent Modes in Predicting the Transformation of Water Waves by the Linear Wave Theory: 1. Derivation of Equations of Wave Energy (선형파 이론에 의한 파랑변형 예측 시 소멸파 성분의 중요성 검토: 1. 에너지 식 유도)

  • 이창훈;조용식
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.14 no.4
    • /
    • pp.282-285
    • /
    • 2002
  • The magnitude of evanescent modes in terms of dynamics is investigated in case that the transformation of water waves is predicted using the linear wave theory. In other words, derivation is made of both the kinetic and potential wave energies of evanescent modes as welt as propagating modes. The evanescent modes consist of compound components of propagating and evanescent modes, those of identically equal evanescent modes, and those of identically different evanescent modes. The wave energy per a horizontal distance decreases exponentially with the distance.

Separation of Seismic Signals using a Polarization Filter based on the Complex Trace Analysis Method (복소트레이스 분극필터를 이용한 다성분 탄성파자료 신호분리)

  • Kim, Ki-Young;Lee, So-Young
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2005.05a
    • /
    • pp.233-236
    • /
    • 2005
  • Polarization filtering based on the multicomponent complex trace analysis method is performed to reject Rayleigh waves and to enhance S waves. To test the polarization filter, synthetic seismic data were constructed for a simple two-layer model based on the finite difference method. Rayleigh waves with elliptic motion are eliminated effectively and P and S waves with linear motions are well separated each other.

  • PDF

Separation of Seismic Signals using a Polarization Filter based on the Complex Trace Analysis Method (복소트레이스 분극필터를 이용한 다성분 탄성파자료 신호분리)

  • Kim, Ki-Young;Lee, So-Young
    • Journal of the Korean Geophysical Society
    • /
    • v.8 no.1
    • /
    • pp.35-38
    • /
    • 2005
  • Polarization filtering based on the multicomponent complex trace analysis method is performed to reject Rayleigh waves and to enhance S waves. To test the polarization filter, synthetic seismic data were constructed for a simple two-layer model based on the finite difference method. Rayleigh waves with elliptic motion are eliminated effectively and P and S waves with linear motions are well separated each other.

  • PDF