• Title/Summary/Keyword: 파쇄압력

Search Result 67, Processing Time 0.019 seconds

Numerical Approach for Determination of Shut-in Pressure in Hydrofracturing Test (수압파쇄 균열폐쇄압력 산정을 위한 수치해석 연구)

  • Choi, Sung-O.
    • Tunnel and Underground Space
    • /
    • v.21 no.2
    • /
    • pp.128-137
    • /
    • 2011
  • The shut-in pressure calculated in common hydrofracturing test for vertical borehole equals generally to the minimum horizontal principal stress, so it should be considered as an essential parameter for determining the in-situ stress regime around the rock mass. It shows usually an ambiguous value in pressure-time history curves, however, because of the relationship between the behavior of hydraulic fractures and the condition of remote stress regime. In this study, a series of numerical analyses have been carried out to compare several methods for determining the shut-in pressure during hydrofracturing. The hydraulic-mechanical coupling has been applied to numerical analysis for simulating the fracture propagation by hydraulic pressure, and the different discontinuity geometry has been considered in numerical models to examine the effect of numerical element shape on fracture propagation pattern. From the numerical simulations with the four different discontinuity geometries, it was revealed that the shut-in pressure obtained from graphical methods rather than statistical method was relatively small. Consequently a care should be taken in selecting a method for determining the shut-in pressure when a stress anomaly around borehole and a fracture propagation with complicate mechanism are considered.

Experimental Study on Fracture Pressure, Permeability Enhancement and Fracture Propagation using Different Fracture Fluids (다양한 파쇄 유체별 파쇄압력, 투과도 증진 및 균열전파에 관한 실험적 연구)

  • Choi, JunHyung;Lee, Hyun Suk;Kim, Do Young;Nam, Jung Hun;Lee, Dae Sung
    • Tunnel and Underground Space
    • /
    • v.31 no.1
    • /
    • pp.41-51
    • /
    • 2021
  • The hydraulic fracturing developed to improve permeability of tight reservoir is one of key stimulation technologies for developing unconventional resources such as shale gas and deep geothermal energy. The experimental study was conducted to improve disadvantage of hydraulic fracturing which has simple fracture pattern and poor fracturing efficiency. The fracturing experiments was conducted for tight rock using various fracturing fluids, water, N2, and CO2 and the created fracture pattern and fracturing efficiency was analyzed depending on fracturing fluids. The borehole pressure increased rapidly and then made fractures for hydraulic fracturing with constant injection rate, however, gas fracturing shows slowly increased pressure and less fracture pressure. The 3D tomography technic was used to generate images of induced fracture using hydraulic and gas fracturing. The stimulated reservoir volume (SRV) was estimated increment of 5.71% (water), 12.72% (N2), and 43.82% (CO2) respectively compared to initial pore volume. In addition, permeability measurement was carried out before and after fracturing experiments and the enhanced permeability by gas fracturing showed higher than hydraulic fracturing. The fracture conductivity was measured by increasing confining stress to consider newly creating fracture and closing induced fracture right after fracturing. When the confining stress was increased from 2MPa to 10MPa, the initial permeability was decreased by 89% (N2) and 50% (CO2) respectively. This study shows that the gas fracturing makes more permeability enhancement and less reduction of induced fracture conductivity than hydraulic fracturing.

Influence of the Cleavage Anisotropy of Pocheon Granite on Hydraulic Fracturing Behaviour (포천 화강암의 결 이방성이 수압파쇄거동에 미치는 영향)

  • Jung, Sung-Gyu;Zhuang, Li;Yeom, Sun;Kim, Kwang-Yeom;Min, Ki-Bok
    • Tunnel and Underground Space
    • /
    • v.26 no.4
    • /
    • pp.327-337
    • /
    • 2016
  • In this study, laboratory hydraulic fracturing tests are carried out to evaluate the effects of the cleavage anisotropy of Pocheon granite. Breakdown pressure is smaller when cracks are generated to the direction of rift plane in constant pressurization rate condition because of higher microcracks density. Besides not only injection rate changes but also the amount of injection pressure for fracture initiation and crack expansion is detected while testing due to internal deformation. Pressurization rate is higher while hydraulic fracture testing with constant injection rate condition in case of the specimen which has rift plane perpendicular to borehole because there are much flow paths to penetrate compared to the specimen which has hardway plane perpendicular to borehole. Observation by X-ray CT scanning shows that almost all of cracks due to hydraulic fracturing are generated to the direction of plane which has higher microcrack density that is rift plane or grain plane.

Experimental Study of Breakdown Pressure, Acoustic Emission, and Crack Morphology in Liquid CO2 Fracturing (액체 이산화탄소 파쇄법의 파쇄 압력, 음향 방출, 균열 형상에 관한 실험적 연구)

  • Ha, Seong Jun;Yun, Tae Sup
    • Tunnel and Underground Space
    • /
    • v.29 no.3
    • /
    • pp.157-171
    • /
    • 2019
  • The fracturing by liquid carbon dioxide ($LCO_2$) as a fracking fluid has been an alternative to mitigate the environmental issues often caused by the conventional hydraulic fracking since it facilitates the fluid permeation owing to its low viscosity. This study presents how $LCO_2$ injection influences the breakdown pressure, acoustic emission, and fracture morphology. Three fracturing fluids such as $LCO_2$, water, and oil are injected with different pressurization rate to the synthetic and porous mortar specimens. Also, the shale which has been a major target formation in conventional fracking practices is also tested to examine the failure characteristics. The results show that $LCO_2$ injection induces more tortuous and undulated fractures, and particularly the larger fractures are developed in cases of shale specimen. On the other hand, the relationship between the fracturing fluids and the breakdown pressure shows opposite tendency in the tests of mortar and shale specimens.

Experimental and Numerical Study on the Dynamic Fracture Processes of PMMA Block by NRC Vapor Pressure Fracture Agent (NRC 증기압 암석 파쇄제에 의한 PMMA 블록의 동적 파괴 과정에 관한 실험 및 수치해석적 연구)

  • Gyeongjo Min
    • Journal of Korean Society of Disaster and Security
    • /
    • v.16 no.1
    • /
    • pp.91-103
    • /
    • 2023
  • This study aims to investigate the dynamic fracture characteristics of rocks and rock-like materials subjected to the Nonex Rock Cracker (NRC), a vapor pressure crushing agent that produces vapor pressure by instantaneously vaporizing a liquid mixture crystallized through the thermite reaction. Furthermore, the study seeks to develop an analytical technique for predicting the fracture pattern. A dynamic fracture test was performed on a PMMA block, an artificial brittle material, using the NRC. High-speed cameras and dynamic pressure gauges were employed to capture the moment of vapor pressure generation and measure the vapor pressure-time history, respectively. The 2-dimensional Dynamic Fracture Process Analysis (2D DFPA) was used to simulate the fracture process caused by the vapor pressure, with the applied pressure determined based on the vapor pressure-time history. The proposed analytical method was used to examine various fracture patterns with respect to granite material and high-performance explosives.

Investigation of Fracture Propagation in Cement by Hydraulic Fracturing Under the Tri-axial Stress Condition (시멘트 시료에 대한 삼축압축 환경에서의 수압파쇄시험 연구)

  • Riu, Hee-Sung;Jang, Hyun-Sic;Jang, Bo-An
    • The Journal of Engineering Geology
    • /
    • v.27 no.3
    • /
    • pp.233-244
    • /
    • 2017
  • We conducted hydraulic fracturing experiments on cement samples to investigate the dependency of fracture propagation on the viscosity of injection fluid and the in situ stress state. Ten cubic samples (20 cm side length) were produced using cement that was cured in water for more than one month. Samples were placed in a tri-axial compression apparatus with three independent principal stresses. An injection hole was drilled and the sample was hydraulically fractured under a constant injection rate. We measured injection pressures and acoustic emissions (AE) during the experiments, and investigated the fracture patterns produced by hydraulic fracturing. Breakdown pressures increased exponentially with increasing viscosity of the injection fluid. Fracture patterns were dependent on differential stress (i.e., the difference between the major and minor principal stresses). At low differential stress, multiple fractures oriented sub-parallel to the major principal stress axis propagated from the injection hole, and in some samples the fracture orientation changed during propagation. However, at high differential stress, a single fracture propagated parallel to the major principal stress axis. AE results show similar patterns. At low differential stress, AE source locations were more widespread than at high differential stress, consistent with the fracture pattern results. Our study suggests that hydraulic fracturing during shale gas extraction should be performed parallel to the orientation of minimum differential stress.

Characteristics of Pohang CO2 Geological Sequestration Test Site (포항 이산화탄소 지중저장 시험 사이트 특성)

  • Kim, Seon-Kyoung;Chang, Chandong;Shinn, Youngjae;Kwon, Yikyun
    • The Journal of Engineering Geology
    • /
    • v.28 no.2
    • /
    • pp.175-182
    • /
    • 2018
  • We analyze geological, petrophysical and geomechanical characteristics of a $CO_2$ sequestration test site, Pohang. The target reservoir exists at a depth of 750 m, where porous and permeable sandstones/conglomerates prevail. The reservoir is underlain by thick mudstone formations. We estimate in situ stress conditions using an exploratory wellbore drilled through the target reservoir. The in situ stress condition is characterized by a strike-slip faulting favored stress regime. We discuss various aspects of reservoir fracture pressures and fault reactivation pressures based on the stress magnitudes.

A Study on the Development of Geothermal Energy Using the Hydraulic Fracturing method (수압파쇄법을 이용한 지열에너지 개발에 관한 연구)

  • 이희근
    • Tunnel and Underground Space
    • /
    • v.5 no.4
    • /
    • pp.323-335
    • /
    • 1995
  • 지열에너지 개발의 기본적 개념은 지하 심부의 고온건조암체에 시추공을 이용한 수압파쇄를 실시하여 고온건조암체내에 인공파쇄대를 형성함으로써 유체의 유동회로를 구축하여 지열에너지의 회수를 도모하는 것이다. 본 논문에서는 수압파쇄균열의 발전방향 조절문제와 관련하여, 초고압수 절삭장치를 이용, 수압파쇄공 내에 인공슬롯을 형성하여 수압파쇄를 실시함으로써 균열의 발전방향을 조사하였으며, 수압파쇄에 의한 파쇄대내로의 유체순환실험을 통해 지열수의 유동특성을 규명하였다. 이를 위해 모델에 종균열과 횡균열을 형성시키고 균열내에 주입되는 물의 주입률, 정상류압력, 흐름저항을 조사하고, 이 결과를 이용하여 전산모델링을 수행하였다. 인공절리면에 대한 투수시험에서는 10$0^{\circ}C$까지의 온도변화에 따라 투수계수가 증가하였으며, 봉압 증가에 따라 증가율이 현저히 감소하였다.

  • PDF

Modeling of Highly Segmented Fluid-Driven Natural Fractures (다중으로 분할된 자연수압파쇄 균열 모델링)

  • Sim, Young-Jong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.6
    • /
    • pp.135-141
    • /
    • 2009
  • Fracturing technique using fluid injection into the borehole is widely used technology in the industry for the geothermal heat, oil, and gas extraction. Dealing with fluid-driven natural fractures such as dike and vein indirectly, design technology would be improved by adapting their principles. In this paper, mechanical interaction between the segments is evaluated by modeling highly segmented and closely spaced fluid-driven natural fractures. The number of segments is 71 with 3,339 measured apertures in which the interaction is considerably predicted. To evaluate mechanical interaction, boundary collocation method is used and the net pressure is calculated by using least square method to fit measured apertures. As a result, in case that mechanical interaction is considered, two pressures as fitting parameters are sufficient to capture measured apertures.

  • PDF

Improvement of In-Situ Stress Measurements by Hydraulic Fracturing - Focusing on the New Standard by Japanese Geotechnical Society (수압파쇄를 이용한 초기응력 측정 결과의 신뢰도 제고 방안 - 일본 지반공학회 표준시험법 개정안을 중심으로)

  • Kim, Hyung-Mok;Lee, Hangbok;Park, Chan;Park, Eui-Seob
    • Tunnel and Underground Space
    • /
    • v.32 no.1
    • /
    • pp.1-19
    • /
    • 2022
  • In this report, new standard, published by Japanese Geotechnical Society, on in-situ stress measurements by hydraulic fracturing was reviewed. In the standard, modification was made for the calculation of fracture re-opening pressure in consideration of fracture surface roughness and residual aperture. The standard also presents how much the system compliance influences the estimation of the fracture re-opening pressure and subsequent in-situ stresses. It is shown that the stiffer the rock mass is, the system compliance should be sufficiently small enough so as to obtain in-situ stress measurement with higher confidence.