• Title/Summary/Keyword: 파쇄성

Search Result 689, Processing Time 0.023 seconds

Large-strain Soft Sensors Using Elastomers Blended with Exfoliated/Fragmented Graphite Particles (탄성중합체와 박리 후 파쇄된 흑연입자 복합재를 이용한 대변형률 연성 센서)

  • Park, Sungmin;Nam, Gyungmok;Kim, Jonghun;Yoon, Sang-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.9
    • /
    • pp.815-820
    • /
    • 2016
  • An elastic polymer (e.g., PDMS) blended with EFG particles is a promising conductive composite for fabricating soft sensors that can detect an object's deformation up to or more than 50%. Here, we develop large-strain, sprayable soft sensors using a mixture of PDMS and EFG particles, which are used as a host elastomer and electrically conductive particles, respectively. A solution for a conductive composite mixture is prepared by the microwave-assisted graphite exfoliation, followed by ultrasonication-induced fragmentation of the exfoliated graphite and ultrasonic blending of PDMS and EFG. Using the prepared solutions for composite and pure PDMS, 1-, 2-, and 3-axis soft sensors are fabricated by airbrush stencil technique where composite mixture and pure PDMS are materials for sensing and insulating layers, respectively. We characterize the soft strain sensors after investigating the effect of PDMS/EFG wt% on mechanical compliance and electrical conductance of the conductive composite.

Investigation of Some Blast Design and Evaluation Parameters for Fragmentation in Limestone Quarries (석회석 광산의 파쇄도 관련 발파설계 및 평가 변수들에 대한 고찰)

  • Rai, Piyush;Yang, Hyung-Sik
    • Tunnel and Underground Space
    • /
    • v.20 no.3
    • /
    • pp.183-193
    • /
    • 2010
  • The present paper highlights some important fragmentation issues experienced in the limestone quarry blast rounds. In light of these major issues, the paper outlines influence of a few important design parameters, which bear merit to alter the blast performance in order to duly resolve the issues in field scale blast rounds. A comprehensive field based program for evaluation of such blast rounds has also been suggested. The knowledge disseminated in the paper, backed up by sufficient images, is largely based on the experience of the authors, while designing, implementing and evaluating numerous field scale blast rounds in cement grade limestone quarries.

Mechanical Properties of in Recyclate HIPS with Concentration of Fly Ash (再生 HIPS에 石炭灰 첨가에 따른 기계적 특성)

  • 안태광;김덕현
    • Resources Recycling
    • /
    • v.10 no.2
    • /
    • pp.34-40
    • /
    • 2001
  • Post-consumer dairy HIPS bottles were gathered and recycled by the following processes; crushing into flakes, chemical treatment for the purpose of elimination aluminium caps, washing, and separation from other plastics, such as PP, PE, plasticized PVC These HIPS flakes were extruded into the chips using a single screw extruder. Recyclate HIPS chips were mixed with fly ash as an additive in the range of 5-50 wt%, which were formed from coal power plant. Recyclate HIPS chips mixed with fly ash were molded to investigate thermal and mechanical properties. Their samples, thermal and mechanical properties were measured via DSC, TGA, UTM, and impact strength analysis. The probable mechanical properties exhibited the range of 5∼30% fly ash contents for their applications.

  • PDF

Rapid and Low-Energy Melting of Cast Iron using Small Scrap Steel as a Charge Material - Part II. Application of Small Scrap Steel in Low-Frequency Induction Melting Furnace and Energy Characteristics (소형 고철 장입재를 활용한 신속 저에너지 주철 용해 - Part II. 저주파 용해로 적용 및 에너지 측면 특징)

  • Lee, Sang-Hwan
    • Journal of Korea Foundry Society
    • /
    • v.41 no.2
    • /
    • pp.132-138
    • /
    • 2021
  • In this study, the power basic units to produce cast iron by using the press and shredded scrap are compared in 16t/h low-frequency induction melting furnace. Charging the shredded scrap instead of the press scrap was confirmed that the power basic unit is improved by about 5%. The energy characteristics according to the shape and size of scrap steel and the effect of the furnace size were investigated. Finally, the strategy to improve the utilization of this technology was proposed.

Study on Stratigraphy, Structural Geology and Hydrocarbon Potentials of the Cretaceous Strata, Northeastern Iraq (이라크 북동부 지역 백악기 퇴적층의 층서, 구조지질 및 탄화수소 부존 유망성 연구)

  • Lee, Taecheol;Han, Seungwoo;Ryu, In-Chang
    • Economic and Environmental Geology
    • /
    • v.47 no.4
    • /
    • pp.381-393
    • /
    • 2014
  • Seismic reflection data are integrated with fieldwork data in order to understand startigraphy, structural geology and hydrocarbon potentials of Cretaceous strata in the Mesopotamian basin, Northeastern Iraq. Cretaceous strata in the basin divided into the Qamchuqa, Kometan, Bekhme and Shiranish formations, which are composed of carbonates deposited in shallow marine environment. The geological structures in these formations are mainly recognized as thrusts, detachment folds, fault propagation folds and fault bend folds. As well, NW-SE trending fractures are regularly developed, and are horizontal or perpendicular to the structures. The distribution and frequency of fractures are related to the development of the thrusts. In terms of hydrocarbon potentials, Cretaceous strata in the basin have limited capacities for source rocks and seal rocks due to the lack of organic carbon content and the well-developed fractures, respectively. Although these carbonates have limited primary porosity, however, development of the secondary porosity derived from the fractures contributes to enhance the reservoir quality. Most important factor for the reservoir quality of Cretaceous strata seems to be the frequency and connectivity of fractures relative to locations of folds and faults. The results delineated in this study will use as reference for recognizing stratigraphy and structures of Cretaceous strata and will provide useful information on hydrocarbon potentials of Cretaceous strata in the Mesopotamian basin, NE Iraq.

Prediction of Rock Fragmentation and Design of Blasting Pattern based on 3-D Spatial Distribution of Rock Factor (발파암 계수의 3차원 공간 분포에 기초한 암석 파쇄도 예측 및 발파 패턴 설계)

  • Shim Hyun-Jin;Seo Jong-Seok;Ryu Dong-Woo
    • Tunnel and Underground Space
    • /
    • v.15 no.4 s.57
    • /
    • pp.264-274
    • /
    • 2005
  • The optimum blasting pattern to excavate a quarry efficiently and economically can be determined based on the minimum production cost which is generally estimated according to rock fragmentation. Therefore it is a critical problem to predict fragment size distribution of blasted rocks over an entire quarry. By comparing various prediction models, it can be ascertained that the result obtained from Kuz-Ram model relatively coincides with that of field measurements. Kuz-Ram model uses the concept of rock factor to signify conditions of rock mass such as block size, rock jointing, strength and others. For the evaluation of total production cost, it is imperative to estimate 3-D spatial distribution of rock factor for the entire quarry. In this study, a sequential indicator simulation technique is adopted for estimation of spatial distribution of rock factor due to its higher reproducibility of spatial variability and distribution models than Kriging methods. Further, this can reduce the uncertainty of predictor using distribution information of sample data The entire quarry is classified into three types of rock mass and optimum blasting pattern is proposed for each type based on 3-D spatial distribution of rock factor. In addition, plane maps of rock factor distribution for each ground levels is provided to estimate production costs for each process and to make a plan for an optimum blasting pattern.

3D analysis of fracture zones ahead of tunnel face using seismic reflection (반사 탄성파를 이용한 터널막장 전방 파쇄대의 3차원적 예측)

  • Lee, In-Mo;Choi, Sang-Soon;Kim, Si-Tak;Kim, Chang-Ki;Jun, Jea-Sung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.4 no.4
    • /
    • pp.301-317
    • /
    • 2002
  • Recently, a geophysical exploration technology is frequently utilized in the civil engineering field as well as in the resource exploration. It might be important for civil engineers to understand the fundamental theory of seismic survey and limitation of the technique when utilizing these techniques in the civil engineering field. A 3-dimensional migration technique based on the principle of ellipsoid to predict the fractured zone ahead of tunnel face utilizing the tunnel seismic survey was proposed so that the geometry of the fractured zone can be estimated, i.e. the angle between tunnel axis and discontinuity zone, and the dip. Moreover, a numerical analysis technique to simulate the TSP (Tunnel Seismic Prediction) test was proposed in this paper. Based on parametric studies, the best element size, the analysis time step, and the dynamic characteristics of pressure source were suggested to guarantee the stability and accuracy of numerical solution. Example problems on a hypothetical site showed the possibility that the 3-dimensional migration technique proposed in this paper appropriately estimate the 3D-geometry of fractures ahead of tunnel face.

  • PDF

Development of Efficient Monitoring Algorithm at EGS Site by Using Microseismic Data (미소진동 자료를 이용한 EGS 사이트에서의 효율적인 모니터링 알고리듬 개발)

  • Lee, Sangmin;Byun, Joongmoo
    • Geophysics and Geophysical Exploration
    • /
    • v.19 no.3
    • /
    • pp.111-120
    • /
    • 2016
  • In order to enhance the connectivity of fracture network as fluid path in enhanced/engineered geothermal system (EGS), the exact locating of hydraulic fractured zone is very important. Hydraulic fractures can be tracked by locating of microseismic events which are occurred during hydraulic fracture stimulation at each stage. However, since the subsurface velocity is changed due to hydraulic fracturing at each stage, in order to find out the exact location of microseismic events, we have to consider the velocity change due to hydraulic fracturing at previous stage when we perform the mapping of microseimic events at the next stage. In this study, we have modified 3D locating algorithm of microseismic data which was developed by Kim et al. (2015) and have developed 3D velocity update algorithm using occurred microseismic data. Eikonal equation which can efficiently calculate traveltime for complex velocity model at anywhere without shadow zone is used as forward engine in our inversion. Computational cost is dramatically reduced by using Fresnel volume approach to construct Jacobian matrix in velocity inversion. Through the numerical test which simulates the geothermal survey geometry, we demonstrated that the initial velocity model was updated by using microseismic data. In addition, we confirmed that relocation results of microseismic events by using updated velocity model became closer to true locations.

Extracorporeal Shock Wave Lithotripsy for Renal Stone with Infundibular Stenosis (신누두부 협착이 있는 신장결석의 체외충격파쇄석술)

  • Lee, Won-Hong;Son, Soon-Yong;Kang, Seong-Ho;Lee, Yong-Moon;Yoon, Seok-Hwan
    • Journal of radiological science and technology
    • /
    • v.29 no.2
    • /
    • pp.71-74
    • /
    • 2006
  • We analyzed retrospectively our experience to evaluate an effect of extracorporeal shock wave lithotripsy (ESWL) for renal stone with infundibular stenosis. From January 2002 to August 2005, 35 patients with renal stone with infundibular stenosis were treated with ESWL. The diagnosis of infundibular stenosis was made by intraveneous pyelography or retrograde pyelography. The final follow-up check was performed by simple abdominal film or computed tomography and interview after 6 months to 24 months (mean 10 months). 7(20.0%) of 35 patients was freed completely, but Stone free rate including less than 2 mm size was 80%(28/35). 30(85.7%) patients became asymptomatic, 4(11.4%) patients were continued, and 1(2.9%) patient was required the percutaneous nephrostolithotomy. Although ESWL has a low complete stone free rate, We suggest that renal stone with infundibular stenosis should be treated with ESWL, because that is likely to produce a high symptom free and low complications.

  • PDF

A study on the optimal reinforcement area for excavation of a small cross-section shield TBM tunnel in fault fracture zone through parameter analysis (매개변수 분석을 통한 단층파쇄대의 소단면 쉴드 TBM 터널 굴착 시 최적 보강영역 연구)

  • Kang, Byung-Yun;Park, Hyung Keun;Cha, Jae-Hoon;Kim, Young-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.3
    • /
    • pp.261-275
    • /
    • 2020
  • When excavating a small cross-section tunnel in a fault fracture zone using the shield TBM method, there is a high possibility of excessive convergence and collapse. Appropriate ground reinforcement is required to minimize construction cost loss and trouble due to a fault fracture zone. In this study, the optimal reinforcement area was suggested and the surrounding ground behavior was investigated through numerical analysis using MIDAS GTS NX (Ver. 280). For the parameters, the width of the fault fracture zone, the existence of fault gouge, and the groundwater level and depth of cover were applied. As a result, when there is not fault gouge, the convergence and ground settlement are satisfied the standard when applying ground reinforcement by up to 0.5D. And, due to the high permeability coefficient, it is judged that it is necessary to apply 0.5D reinforcement. There is a fault gouge, it was possible to secure stability when applying ground reinforcement between the entire fault fracture zone from the top of the tunnel to 0.5D. And, because the groundwater discharge occurred within the standard value due to the fault gouge, reinforcement was unnecessary.