• Title/Summary/Keyword: 파손 영역

Search Result 95, Processing Time 0.025 seconds

Vacuum Safety

  • Ju, Jang-Heon
    • Vacuum Magazine
    • /
    • v.2 no.2
    • /
    • pp.49-58
    • /
    • 2015
  • 진공 배기 시스템에 위험한 환경을 초래할 수 있는 모든 가능성을 찾아 낼 수는 없지만 누적된 현장 경험과 연구 결과에 맞추어 최대한 필요한 안전 조치들을 취해야 한다. 진공 배기 시스템이나 그 구성품들에 대한 심각한 파손을 유발하는 공통적인 요인들은 발화성 물질의 점화나 진공 배기 시스템의 배기구 막힘에 의해 발생한다. 따라서, 진공 펌프와 진공 시스템의 안전한 가동과 사용을 위해서는 다음과 같은 것들을 반드시 준수하여야 한다. ${\blacksquare}$ 발화성, 폭발성 공정 물질을 사용하는 진공 배기 시스템은 정규 유지 보수 작업(PM) 후 첫 번째 배기 과정은 매우 천천히 진행하여 진공 배기 시스템 내부에 급격한 난류가 형성되지 않도록 해 주어야 한다. ${\blacksquare}$ 진공 배기 시스템 내에서 발화성 물질들의 농도가 발화 영역(flammable zone, potentially explosive atmosphere)에 들어가지 않도록 하여야 한다. 이를 위해서는 불활성 가스를 이용하여 진공 펌프와 진공 배기 시스템의 가동 예상 조건이나 고장 환경하에서 안전한 농도 이하로 희석시켜야 한다. ${\blacksquare}$ 진공 펌프와 진공 배기 시스템에 장착되어 사용되는 밸브 등의 기계적 부품들이나 공정에 사용되는 물질과 공정 부산물들(by-products)로 인하여 배관, 필터 배기구 등이 막히지 않도록 하여야 한다. ${\blacksquare}$ 공정에 사용되는 물질들, 특히 산소($O_2$), 오존 ($O_3$) 등의 산화제 농도가 높을 때는 오일 회전 배인 진공 펌프(Oil rotary vane vacuum pump)에 미네랄(mineral) 오일을 사용하지 말아야 하며, PFPE(Perfluoropolyether) 오일을 사용하여야 한다. 시판되는 진공 펌프 오일 중 비발화성(non-flammable)으로 표기된 오일이라고 하더라도 산화제(oxidant)의 농도가 체적비로 30 % 넘는 공정 환경에는 사용하지 말아야 한다. ${\blacksquare}$ 진공 펌프와 진공 배기 시스템에 의해 배기되는 물질들이 물($H_2O$)과 격렬하게 반응하는 경우는 물이 아닌 다른 냉각제를 사용하여야 한다. ${\blacksquare}$ 안전하지 않다고 판단되는 상황에서는 해당 전문가의 조언이나 해당 전문가의 직접적인 현장 도움을 통해 문제를 해결하여야 한다.

Potential Damage Region Investigation of WC-Co Cemented Carbide Die Based on Finite Element Analysis of Cold Forging Process (냉간 단조 공정의 유한 요소 해석에 기반한 WC-Co 초경 금형의 파손 위험 영역 평가)

  • Ryu, S.H.;Jung, S.H.;Jeong, H.Y.;Kim, K.I.;Cho, G.S.;Noh, W.
    • Transactions of Materials Processing
    • /
    • v.31 no.6
    • /
    • pp.376-383
    • /
    • 2022
  • The potential damage region of a WC-Co cemented carbide die is investigated for cold forging process of a wheel-nut by numerical simulation with its chemical composition considered. Numerical simulation is utilized to calculate internal stress, especially for the WC-Co die, during the forging process. Finite element model is established, in which the elasto-plastic properties are applied to the work-piece of bulk steel, and elastic properties are considered for the lower die insert of the WC-Co alloy. This stress analysis enables to distinguish the potential damage regions of the WC-Co die. The regions from calculation are comparatively analyzed along with the crack area observed in the die after repetitive manufacturing. Effect of chemical composition of the WC-Co is also evaluated on characteristics of potential damage region of the die with variance of mechanical properties considered. Derived from Mohr-Coulomb fracture model, furthermore, a new stress index is presented and used for die stress analysis. This index inherently considers hydrostatic pressure and is then capable of deducing wide range of its distribution for representing stress state by modification of its parameter implying pressure sensitivity.

A Study on the Effect of Adhesion Condition on the Mode I Crack Growth Characteristics of Adhesively Bonded Composites Joints (복합재 접착 체결 구조의 접착 상태가 모드 I 균열 성장 특성에 미치는 영향에 대한 연구)

  • No, Hae-Ri;Jeon, Min-Hyeok;Cho, Huyn-Jun;Kim, In-Gul;Woo, Kyeong-Sik;Kim, Hwa-Su;Choi, Dong-Su
    • Composites Research
    • /
    • v.34 no.5
    • /
    • pp.323-329
    • /
    • 2021
  • In this paper, the characteristics of fracture in mode I loading were analyzed for adhesively bonded joints with non-uniform adhesion. The Double Cantilever Beam test was performed and mode I fracture toughness was obtained. In the case of non-uniform adhesively bonded joints, the stable crack growth sections and unstable crack growth section were shown. The fracture characteristics of each section were observed through the load-displacement curve of the DCB test and the fracture surface of the specimen. Finite Element Analysis was performed at the section based on segmented section by crack length measured through the test and using the mode I fracture toughness of each section. Through DCB test results and finite element analysis results, it was confirmed that the fracture behavior of specimens with non-uniform adhesion can be simulated.

Prediction and Calibration of Transverse Mechanical Properties of Unidirectional Composites with Random Fiber Arrangement Considering Interphase Effect (계면 특성을 고려한 무작위 섬유배치를 갖는 단방향 복합재료의 가로방향 기계적 물성 예측 및 보정)

  • Park, Shin-Moo;Kim, Do-Won;Jeong, Gyu;Lim, Jae Hyuk;Kim, Sun-Won
    • Composites Research
    • /
    • v.32 no.5
    • /
    • pp.270-278
    • /
    • 2019
  • In this study, the transverse mechanical properties of the unidirectional fiber reinforced composite modeled with fiber, matrix, and interphase is predicted with the representative volume elements and is calibrated by adjusting the properties and thickness of the interphase by referring to the test results. While the conventional representative volume elements modeled with fiber and matrix shows high predictive accuracy for the longitudinal mechanical properties, but it shows some deviations in the transverse mechanical properties. In order to compensate such gaps, the interphase region is employed, and its mechanical properties are adjusted to improve the prediction accuracy according to various elastic modulus, thickness, and strength parameters. As a result, the deviation of the transverse elastic modulus and strength is reduced significantly similar to the test results of the unidirectional composites with the accuracy of the longitudinal mechanical properties preserved.

Progressive Damage Analysis of Plain Weave Fabric CFRP Orthogonal Grid Shell Under Bending Load (굽힘 하중을 받는 평직물 CFRP 직교 격자 쉘의 점진적 손상 해석)

  • Lim, Sung June;Baek, Sang Min;Kim, Min Sung;Park, Min Young;Park, Chan Yik
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.4
    • /
    • pp.256-265
    • /
    • 2019
  • In this paper, the progressive damage of an orthogonal grid shell fabricated with plain weave fabric CFRP under bending load was investigated. The orthogonal grids were cured with the bottom composite shell. Progressive damage analysis of an orthogonal grid shell under bending was performed using nonlinear finite element method with Hashin-Rotem failure criterion and Matzenmiller-Lubliner-Taylor(MLT) model. In addition, the three - point bending test for the structure was carried out and the test results were compared with the analysis results. The comparison results of the strain and displacement agreed well. The damage area estimated by the progressive damage analysis were compared with the visual inspection and ultrasonic non-destructive inspection.

Design of thermal inkjet print head with robust and reliable structure (크렉 방지를 위한 잉크젯 프린트 헤드 강건 설계)

  • Kim, Sang-Hyun
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.2
    • /
    • pp.337-342
    • /
    • 2022
  • Although printing technology has recently been widely used in IT fields including displays and fuel cells, residual and thermal stress are generated by a manufacturing process of stacking the layers of the print head and result in the substrate deformation and nozzle plate crack, which may cause ink leaks or not be ejected onto a desired region. Therefore, in this paper, we propose a new design of thermal inkjet print head with a robust and reliable structure. Diverse types of inkjet print head such as a rib, pillar, support wall and individual feed hole are designed to reduce the deformation of the substrate and nozzle plate, and their feasibility is numerically investigated through FEA analysis. The numerical results show that the maximum stress and deformation of proposed print head dramatically drops to at least 40~50%, and it is confirmed that there is no nozzle plate cracks and ink leakage through the fabrication of pillar and support wall typed print head. Therefore, it is expected that the proposed head shape can be applied not only to ink ejection in the normal direction, but also to large-area printing technology.

Structural and Dynamic Analysis of a Unmanned Cargo Multicopter Using Hybrid Power System (하이브리드 추진 시스템을 이용한 수송용 멀티콥터 무인기의 구조 및 동특성 해석)

  • Kee, Youngjung;Kim, Taekyun
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.5
    • /
    • pp.78-85
    • /
    • 2022
  • Multicopter-type unmanned aerial vehicles (UAV) are increasingly for cargo transportation to mountainous and island regions, image information acquisition in disaster areas, and emergency rescue transport. In order to successfully perform these tasks, the aircraft structure must be able to safely support the loads induced by flight conditions while ensuring the vibration and aeroelastic stability of the prop-rotor. This study introduced a structural analysis model of a 40kg payload multicopter with an engine-generator hybrid power system. The deformation and stress distribution are investigated depending on the load conditions. In addition, the vibration characteristics and aeroelastic stability of the prop-rotor were also presented to flight speed and aircraft pitch angle. The maximum thrust generated by the prop-rotor and the landing load applied to the multicopter under normal and emergency landing conditions were reviewed., It confirmed that the structure could support without failure. In addition, it confirmed that the damping characteristics of each primary locate in the constant region according to the aircraft's flight speed and the prop-rotors rotating speed.

Study on Rubber Damping Characteristics of Vibration Reduction Mounts for UAVs (무인기용 진동 저감 마운트의 고무 감쇠 특성에 대한 연구)

  • Chan-Whi Kang;Hun-Suh Park;Dong-Gi Kwag
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.6
    • /
    • pp.927-933
    • /
    • 2023
  • In modern times, with advances in semiconductor technology such as electronic devices, the need to improve the quality of onboard equipment with advanced electronic parts in automobiles, drones, airplanes, projectiles, and various fields, and reduce the impact of various disturbances on onboard equipment is becoming more important. Vibration control through hardware must be determined to prevent damage and improve quality to equipment operating in various environments such as automobiles, drones, airplanes, and projectiles. This study focuses on the study of vibration damping systems to protect mounted equipment from various disturbances and improve stability. Dynamic characteristics analysis, including compressive stiffness, damping rate, and frequency response, and vibration characteristics in the frequency domain of rubber dampers were identified through FEM analysis to identify the characteristics of rubber dampers. Through these findings, we would like to present the criteria for selecting a suitable rubber damper under various disturbance conditions.

Petrological and mineralogical characteristics of the rocks constituting the Sungryemun (South Gate) (숭례문 구성 석재의 암석학적 및 광물학적 특징)

  • 박찬수;이상헌
    • The Journal of the Petrological Society of Korea
    • /
    • v.12 no.4
    • /
    • pp.196-206
    • /
    • 2003
  • The geochemical and mineralogical investigation on the rocks and repair material comprising of the Sungryemun (The 1st National Treasure) has been made. Rock of the Sungryemun is highly weathered coarse-grained calc-alkali granite. The rock consists mainly of quartz, perthite, plagioclase and biotite with small amounts of orthoclase, muscovite, chlorite and sericite, which are major weathering products from perthite. For obtaining informations about degree of weathering, mineral composition of the original rock calculated by CIPW norm and weathered rock composition determined by XRD quantitative analysis were plotted on a ternary diagram of quartz-potash feldspar-plagioclase. Original rock compositions are plotted on the central granite area. whereas weathered ones are plotted on the granite area close to quartz. The result means that quartz is more abundant in weathered rock, due to selective chemical weathering of potash feldspar and plagioclase over quartz. On the whole, surface of the rocks were black-coated, exfoliated and highly fractured due to the physical and chemical weathering and heavy load has made the cracks in the lower parts of the stone construction. Also, cement and nails, which was used as repair material, during the repair work in the early 1960's, has accelerated the weathering process. Furthermore, weathered conditions of repair materials are very severe. Therefore, it is very urgent to establish of the conservation plan for the Sungryemun.

The Experimental Study on the Absorbed Energy of Carbon/Epoxy Composite Laminated Panel Subjected to High-velocity Impact (고속 충격을 받는 Carbon/Epoxy 복합재 적층판의 흡수 에너지 예측에 대한 실험적 고찰)

  • Cho, Hyun-Jun;Kim, In-Gul;Lee, Seokje;Woo, Kyeongsik;Kim, Jong-Heon
    • Composites Research
    • /
    • v.26 no.3
    • /
    • pp.175-181
    • /
    • 2013
  • The evaluation and prediction for the absorbed energy, residual velocity, and impact damage are the key things to characterize the impact behavior of composite laminated panel subjected to high-velocity impact. In this paper, the method to predict the residual velocity and the absorbed energy of Carbon/Epoxy laminated panel subjected to high velocity impact are proposed and examined by using quasi-static perforation test and high-velocity impact test. Total absorbed energy of specimen due to the high-velocity impact can be grouped with static energy and kinetic energy. The static energy are consisted of energy due to the failure of the fiber and matrix and static elastic energy, which are related to the quasi-static perforation energy. The kinetic energy are consisted of kinetic energy of moving part of specimen, which are modelled by three modified kinetic model. The high-velocity impact test were conducted by using air gun impact facility and compared with the predicted values. The damage area of specimen were examined by C-scan image. In the high initial impact velocity above the ballistic limit, both the static energy and the kinetic energy are known to be the major contribution of the total absorbed energy.