• Title/Summary/Keyword: 파랑 에너지

Search Result 1,232, Processing Time 0.024 seconds

Shoreline Changes Caused by the Construction of Coastal Erosion Control Structure at the Youngrang Coast in Sockcho, East Korea (속초 영랑해안 해빈침식대책 인공구조물 건설에 기인하는 해안선 변화)

  • Kang, Yoon-Koo;Park, Hyo-Bong;Yoon, Han-Sam
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.13 no.4
    • /
    • pp.296-304
    • /
    • 2010
  • The shoreline change caused by the construction of shore protection structures are discussed based on the example of Youngrang coast, Sokcho where the coastal erosion control system(CECS), three artificial headlands and two submerged breakwaters are being constructed. The study qualitatively analyzed the shoreline changes of Youngrang coast using available satellite/aerial photographs and camera photographs taken during the construction period of 6 years since 2002 for the artificial headlands construction. The main results from the study are as following. (1) Before the installation of the middle artificial headland, longshore drifts along Youngrang coast are transported in the NW-SE direction according to the seasonally different wave characteristics. (2) During the CECS construction the shoreline is continuously changed by altering the local longshore drift budget. Especially, the middle artificial headland induces considerable change of shoreline by blocking the sediment supply from the southern pocket beach to the northern pocket beach and by accelerating the sediment accretion at the wave shadow zone behind its head. It induces the asymmetry on the net longshore drift causing the significant erosion at the center of the southern pocket beach. (3) The study demonstrates that serious unintended erosion/accretion problem are possibly occurred due to local changes on the wave transformation and the sediment transport by the construction of coastal erosion control system.

Optimum Conditions for Improvement of Mechanical and Interfacial Properties of Thermal Treated Pine/CFRP Composites (열처리된 Pine/탄소섬유 복합재료의 기계적 및 계면물성 향상을 위한 최적 조건)

  • Shin, Pyeong-Su;Kim, Jong-Hyun;Park, Ha-Seung;Baek, Yeong-Min;Kwon, Dong-Jun;Park, Joung-Man
    • Composites Research
    • /
    • v.30 no.4
    • /
    • pp.241-246
    • /
    • 2017
  • The brittle nature in most FRP composites is accompanying other forms of energy absorption mechanisms such as fibre-matrix interface debonding and ply delamination. It could play an important role on the energy absorption capability of composite structures. To solve the brittle nature, the adhesion between pines and composites was studied. Thermal treated pines were attached on carbon fiber reinforced polymer (CFRP) by epoxy adhesives. To find the optimum condition of thermal treatment for pine, two different thermal treatments at 160 and $200^{\circ}C$ were compared to the neat case. To evaluate mechanical and interfacial properties of pines and pine/CFRP composites, tensile, lap shear and Izod test were carried out. The bonding force of pine grains was measured by tensile test at transverse direction and the elastic wave from fracture of pines was analyzed. The mechanical, interfacial properties and bonding force at $160^{\circ}C$ treated pine were highest due to the reinforced effect of pine. However, excessive thermal treatment resulted in the degradation of hemicellulose and leads to the deterioration in mechanical and interfacial properties.

A Study on the Monitoring Method of Ship Hull and Propeller Performance by Operating Ship (선체 및 프로펠러 성능 모니터링 방법 실선 적용을 통한 고찰)

  • KIM, Dong-Hyun;JUNG, Bong-Kyu;HAN, Seung-Jae
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.1
    • /
    • pp.15-21
    • /
    • 2020
  • This study analyzes the results of applying the ISO19030 (hull and propeller performance monitoring method) standard to an actual 178 k bulk vessel. Recently, there have been many attempts to apply various energy reduction solutions to vessels to continuously strengthen GHG reduction regulations and secure maritime competitiveness. However, it is not easy to quantitatively analyze the performance of a ship. To resolve these problems, shipping companies, marine paint companies, ship owners, and transportation associations have appointed specialists and standardized the ISO19030 (standard of hull and propeller performance monitoring method) guidelines in 2016 after three years of continuous review. The ISO19030 standard provides methods to monitor hull and propeller performance quantitatively through standardized procedures, thus allowing ship managers to arrive at informed decisions for hull and propeller maintenance, and to evaluate energy-saving solutions and ship-maintenance efficiency. The ISO19030 standard provides a method of analyzing the ship's own performance by collecting the ship's operation and agency data and correcting its environmental and operating factors. In this paper, we apply the ISO19030 standard to three actual ships and propose the ISO19030 application result and the improvement point of the current ISO19030 standard.

Magnetocrystalline Anisotropy of α''-Fe16N2 (α''-Fe16N2의 자기결정이방성)

  • Khan, Imran;Son, Jicheol;Hong, Jisang
    • Journal of the Korean Magnetics Society
    • /
    • v.26 no.4
    • /
    • pp.115-118
    • /
    • 2016
  • We investigated the magnetocrystalline anisotropy of pure ${\alpha}^{{\prime}{\prime}}-Fe_{16}N_2$ by using full-potential linearized augmented plane wave method (FLAPW). A very high magnetic moment was obtained for Fe (4d) site due to the lattice expansion in the z-direction, while the magnetic moment of Fe (4e) and (8h) site were suppressed due to hybridization with neighboring N atom. The calculated spin magnetic moments for different Fe sites (4d, 4e and 8h) were in good agreement with previously reported values. Due to the tetragonal distortion, we found a very large uniaxial anisotropy constant of $0.58MJ/m^3$. Besides, a high value of magnetization of 1.76MA/m was obtained. In additon, the estimated coercive field and maximum energy product of 6.51 kOe and 71.7 MGOe were obtained for pure ${\alpha}^{{\prime}{\prime}}-Fe_{16}N_2$. This may suggest that the ${\alpha}^{{\prime}{\prime}}-Fe_{16}N_2$ can be utilized for potential rare-earth free permanent magnet material.

A Comparison Study of the Site Amplification Characteristics and Seismic Wave Energy Levels at the Sites near Four Electric Substations (4개 변전소시설 부지 인근관측소의 지반증폭 특성 및 파형에너지 수준 비교 연구)

  • Yoo, Seong-Hwa;Kim, Jun-Kyoung;Wee, Soung-Hoon
    • Journal of the Korean earth science society
    • /
    • v.37 no.1
    • /
    • pp.40-51
    • /
    • 2016
  • The problem has been pointed out that the domestic design response spectrum does not reflect site amplification, particularly in the high frequency bands, including the fact that site specific response spectrum from the observed ground motions appears relatively higher than design response spectrum. Among various methods, this study applied H/V spectral ratio of ground motion for estimating site amplification. This method, originated from S waves and Rayleigh waves, recently has been extended to Coda waves and background noise for estimating site amplification. For limited time of periods, 4 electric substation sites had operated seismic stations at two separate locations (bedrock and borehole) within each substation site. H/V spectral ratio of S wave, Coda wave, and background noise, was applied to 36 accelerations of 3 macro earthquakes (Odaesan, Jeju and Gongju earthquakes), larger than magnitude 3.4. observed simultaneously at each bedrock location within 4 electric substation sites. Site amplifications at the bedrock location of 4 sites were compared among S wave, Coda wave energy, and background noise, and then compared to the previous results from the borehole location data. The site classification was also tried using resonancy frequency information at each site and location. The results suggested that all the electric substation sites showed similar site amplification patterns among S wave, Coda wave, and background noise. Each station showed its own characteristics of site amplification property in low, high and specific resonance frequency ranges. Comparison of this study to other results using different method can give us much more information about dynamic amplification of domestic sites characteristics and site classification.

Characteristics of Fermented Wood Chips and Pig Manure (목질칩을 이용한 분뇨 발효 시 목질칩과 돈분뇨의 성분 변화)

  • Kim, Myung-Kil;Choi, Don-Ha;Choi, In-Gyu
    • Journal of Korea Foresty Energy
    • /
    • v.24 no.2
    • /
    • pp.1-9
    • /
    • 2005
  • After manufacturing fermentation system for degrading pig manure using environmentally friendly technique, performance of the system and characteristics of wood chips and pig manure fermented in the system were analyzed. Results from this study shows that proper fermentation temperature($55{\sim}60^{\circ}C$) reached 3days after the system started and degradation rate, which expresses fermentation performance of system, was $180{\iota}$/day. Even as progressing the fermentation of wood chips and pig manure mixture, the amount of extractives drawn out by alkali, and alcohol-benzene and lignin content was not varied. However, ash content in wood was increased. The inorganic compounds in pig manure seem to be transferred into wood chip. On the other hand holocellulose contents in wood were decreased a little. Holocellulose seems to be consumed as the second carbon source in fermentation process. Results through analysis of inorganic- and heavy metal elements contents in wood chips and pig manure fermented in long term process shows that inorganic elements($Ca^{2+},\;Mg^{2+},\;K^+,\;Na^+$ etc.) contents were increased with fermentation time and heavy metal elements(Cd, As, Cu etc.) which cause environmental pollution were not detected. Number of microorganisms including bacteria, actinomycetes, and fungi, the number of C.F.U(Colony Forming Unit) was increased while temperature in fermentation system was abruptly increased.

  • PDF

해상풍속측정용 마스트의 충격해석에 관한 연구

  • Lee, Gang-Su;Kim, Man-Eung;Son, Chung-Ryeol
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.108-108
    • /
    • 2009
  • The main object of this research is to minimize the shock effects which frequently result in fatal damage in wind met mast on impact of barge. The collision between wind met mast and barge is generally a complex problem and it is often not practical to perform rigorous finite element analyses to include all effects and sequences during the collision. LS-dyna generally purpose explicit finite element code, which is a product of ANSYS software, is used to model and analyze the non-linear response of the met mast due to barge collision. A significant part of the collision energy is dissipated as strain energy and except for global deformation modes, the contribution from elastic straining can normally be neglected. On applying impact force of a barge to wind met mast, the maximum acceleration, internal energy and plastic strain were calculated for each load cases using the finite element method and then compare it, varying to the velocity of barge, with one varying to the thickness of rubber fender conditions. Hence, we restrict the present research mainly to the wind met mast and also parametric study has been carried out with various velocities of barge, thickness of wind met mast, thickness and Mooney-Rivlin coefficient of rubber fender with experimental data. The equation of motion of the wind met mast is derived under the assumption that it was ignored vertical movement effect of barge on sea water. Such an analyzing method which was developed so far, make it possible to determine the proper size and material properties of rubber fender and the optimal moving conditions of barge, and finally, application method can be suggested in designing process of rubber fender considering barge impact.

  • PDF

Defect ratio evaluation of the rock bolt grouting using the reflection method of guided ultrasonic waves (유도초음파의 반사법을 이용한 록볼트 그라우팅의 결함비율 평가)

  • Yu, Jung-Doung;Bae, Myeong-Ho;Han, Shin-In;Lee, In-Mo;Lee, Jong-Sub
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.10 no.3
    • /
    • pp.221-232
    • /
    • 2008
  • Rock bolts have been installed into rockmass as a main support system. In order to evaluate the rock bolt integrity using non-destructive technique, the transmission method of the guided ultrasonic wave has been successfully performed. For the transmission method, however, the source for the generation o# guided ultrasonic waves should be installed at the end of the steel bar during construction of the rock bolt in the field. The purpose of this study is to suggest a reflection method that the source and the receiver are installed on the head of the steel bar. The reflection method is compared with the transmission method using non-embedded rock bolts and rock bolts embedded in concrete block. In this experiment, the piezo disc element is used as the source and the AE sensor is used as the receiver. The wavelet transform is applied to determine the energy velocity. The experimental studies show that the reflection method produces almost identical value of the transmission method, and the energy velocity increases with the defect ratio. This study suggests that the reflection method of the guided ultrasonic wave may be a suitable method fur the rock bolt integrity evaluation in the field.

  • PDF

High-Resolution Seismic Reflection Profiling on Land with Hydrophones Employed in the Stream-Water Driven Trench (하천수유입과 하이드로폰을 이용한 육상 고분해능 탄성파반사법탐사)

  • Kim Ji-Soo;Han Su-Hyung;Kim Hak-Soo;Choi Won-Suk;Jung Chang-Ho
    • Geophysics and Geophysical Exploration
    • /
    • v.4 no.4
    • /
    • pp.133-144
    • /
    • 2001
  • An effective seismic reflection technique for mapping the cavities and bedrock surface in carbonate rocks is described. The high resolution seismic reflection images were successfully registered by using the hydrophones employed in the stream-water driven trench, and were effectively focused by applying optimal data processing sequences. The strategy included enhancement of the signal interfered with the large-amplitude scattering noise, through pre- and post stack processing such as time-variant filtering, bad-trace editing, residual statics, velocity analysis, and careful muting after NMO (normal moveout) correction. The major reflections including the bedrock surface were mapped with the desired resolution and were correlated to the seismic crosshole tomographic data. Shallow major reflectors could be identified and analyzed on the AGC (auto gain control)-applied field records. Three subhorizontal layers were identified with their distinct velocities; overburden (<3000 m/s), sediments (3000-4000 m/s), limestone bedrock (>4000 m/s). Taking into account of no diffraction effects in the field records, gravel-rich overburdens and sediments are considered to be well sorted. Based on the images mapped consistently on the whole survey line and seismic velocity increasing with depth, this area probably lacks in sizable cavities (if any, no air-filled cavities).

  • PDF

Analysis of cause of engine failure during power generation using biogas in sewage treatment plant (하수처리장 바이오가스를 이용한 발전시 가스엔진의 고장원인 분석)

  • Kim, Gill Jung;Kim, Lae Hyun
    • Journal of Energy Engineering
    • /
    • v.25 no.4
    • /
    • pp.13-29
    • /
    • 2016
  • In this study, we analyzed the causes of major faults in the biogas plant through the case of gas engine failure when cogenerating electricity and heat using biogas as a fuel in the actual sewage treatment plant and suggested countermeasures. Hydrogen sulfide in the biogas entering the biogas engine and water caused by intermittent malfunction of the water removal system caused intercooler corrosion in the biogas engine. In addition, the siloxane in the biogas forms a silicate compound with silicon dioxide, which causes scratches and wear of the piston surface and the inner wall of the cylinder liner. The substances attached to the combustion chamber and the exhaust system were analyzed to be combined with hydrogen sulfide and other impurities. It is believed that hydrogen sulfide was supplied to the desulfurization plant for a long period of time because of the high content of hydrogen sulfide (more than 50ppm) in the biogas and the hydrogen sulfide was introduced into the engine due to the decrease of the removal efficiency due to the breakthrough point of the activated carbon in the desulfurization plant. In addition, the hydrogen sulfide degrades the function of the activated carbon for siloxane removal of the adsorption column, which is considered to be caused by the introduction of unremoved siloxane waste into the engine, resulting in various types of engine failure. Therefore, hydrogen sulfide, siloxane, and water can be regarded as the main causes of the failure of the biogas engine. Among them, hydrogen sulfide reacts with other materials causing failure and can be regarded as a substance having a great influence on the pretreatment process. As a result, optimization of $H_2S$ removal method seems to be an essential measure for stable operation of the biogas engine.