• Title/Summary/Keyword: 파랑하중해석

Search Result 158, Processing Time 0.023 seconds

Motion and pin Wave Load characteristics of Ocean Going Pusher-Barge in Regular Waves (Pusher-Barge선의 내항성능 및 연결핀에 작용하는 피랑하중추정)

  • Hong, Seok-Won;Kim, Yeong-Hwan
    • 한국기계연구소 소보
    • /
    • s.12
    • /
    • pp.49-61
    • /
    • 1984
  • 대양을 항해하는 Puser-Barge선의 내항성능과 그연결장치에 작용하는 피랑하중을 추정하기위하여,규칙피중 선체운동응답과,파랑하중응답을 Strip이론으로 구하는 해석적인 방법을 개발하였다. 연결장치의 종류로는 2개의 핀으로 연결되는 힌지연결의 경우와, 3개의 핀으로 연결되는 고정연결의 경우를 고려하였다. 이론 계산결과를 확인하기 위한 모형시험을 힌지연결의 경우에 대하여 정면규칙파중에서 실시하였다. 실험결과와 이론계산결과는 비교적 잘 일치하였다.

  • PDF

On the Development of Design Wave Loads in Classification Rules(II) (선급 및 강선 규칙의 설계 파랑 하중 산식 개발(II))

  • J.Y. Song;Y.K. Chon;T.B. Ha
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.31 no.4
    • /
    • pp.1-7
    • /
    • 1994
  • As a subsequent work presented in Ref.[1] which deals with the global dynamic wave loads in the classification rules, further studies on such as the dynamic pressures above load waterline, motions and accelerations and other local design loads were carried out. Frequency domain 2D linear strip theory is employed and statistical analyses for the concerned ship responses were carried out for the 17 existing ships to derive simple and descriptive formula which can be used as a guidelines at preliminary design stage as well as a part of classification rules. The calculated results and thereby proposed formula are compared with those of other available data, and will be incorporated in the rules for steel ships of Korean Register of Shipping.

  • PDF

Dynamic Response Analysis of Superstructures on Very Large Floating Structures (초대형 부유식 구조물의 상부구조체에 대한 동적응답해석)

  • Kwak, Myung-Ha;Song, Hwa-Cheol
    • Journal of Navigation and Port Research
    • /
    • v.26 no.4
    • /
    • pp.441-447
    • /
    • 2002
  • The importance of utilization of ocean space is increased due to high population and narrow land space. The development of a new technology for future use of ocean space, such as a design technology of Very Large Floating Structures(VLFS) is needed. This paper introduces the rime history analysis of superstructures on very large floating structures and proposes the estimation method of time displacement history considering wave loads. The dynamic responses of superstructure according to variation of period and amplitude are analysed using an example frame structure and the dynamic structural safety of VLFS pilot superstructure is evaluated.

Numerical Analysis of Wave Impact Forces in Numerical Wave Basin (수치파 수조를 이용한 파랑 충격력 수치해석)

  • Shin, Young-Seop;Hong, Key-Yong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.205-210
    • /
    • 2006
  • The impact forces of the highly nonlinear waves are one of the important factors in designing the ocean structures. The impact forces are very difficult to analyze numerically and experimentally because they are impulsive in magnitude and occur instantaneously. In this study the numerical program based on N.S. equations are used to investigate the impact forces of steep waves where the waves are gene rated by the wave maker in the numerical wave basin. The arbitrary steep waves are generated by the superposition of waves of single frequency and the impact forces on vertical cylinder are simulated on the multiblock grids. V.O.F. and the local height function methods are used to track the free surfaces. To validate the numerical analysis the numerical results are compared with the experimental ones and the acceptable agreements are found. It is thought that more studies on the simulations of the incoming breaking waves and the impact forces on the vertical cylinder should be made to obtain the useful results to be applied in the offshore design.

  • PDF

Dynamic Analysis of Floating Wave Energy Generation System with Mooring System (계류시스템을 가진 부유식 파력발전기의 동적거동 해석)

  • Choi, Gyu Seok;Sohn, Jeong Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.2
    • /
    • pp.257-263
    • /
    • 2013
  • In this study, dynamic behaviors of a wave energy generation system (WEGS) that converts wave energy into electric energy are analyzed using multibody dynamics techniques. Many studies have focused on reducing the effects of a mooring system on the motion of a WEGS. Several kinematic constraints and force elements are employed in the modeling stage. Three-dimensional wave load equations are used to implement wave loads. The dynamic behaviors of a WEGS are analyzed under several wave conditions by using MSC/ADAMS, and the rotating speed of the generating shaft is investigated for predicting the electricity capacity. The dynamic behaviors of a WEGS with a mooring system are compared with those of a WEGS without a mooring system. Stability evaluation of a WEGS is carried out through simulation under extreme wave load.

Analysis of Abnormal Settlement Aspect of Caisson Breakwater by Incoming Wave Action in Affected Area of Typhoon (태풍영향권 내습파랑에 의한 직립방파제 이상침하 현상분석)

  • Lee, Joong-Koo;Kim, Hyo-Seob;Park, Koo-Yong;Ahn, Ik-Seong
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.21 no.6
    • /
    • pp.508-517
    • /
    • 2009
  • The real time movement of the caisson was measured when it was open to the waves during breakwater construction. As a result of measurement, no more settlement after the preloading in condition of designed loading was expected but sudden abnormal settlement took place through whole area of the breakwater when waves occurred by typhoon effect. To clarify the reason of this case, wave of the site has been reproduced and the equivalent wave pressure on the caisson was calculated. The numerical analysis of the effect of wave to the ground had been done. Site measurement data is in accordance with the result of numerical analysis.

Estimation of the Design Member Forces in Very Large Concrete Floating Structure due to Wave Loads (파랑하중에 대한 초대형 콘크리트 부유식 구조물의 설계 부재력 산정)

  • Thanh, Nguyen Huu;Noh, Hyuk Chun;Kim, Seung Eock;Na, Seong Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.6A
    • /
    • pp.641-650
    • /
    • 2009
  • This paper presents new equations for member forces in concrete floating structures under wave loadings. The currently adopted design equations for wave loadings disregard the effect of mismatch between design wave length and the length of the structure. In most cases, however, additional internal forces occur due to disequilibriating buoyancy caused by the difference between design wave length and the length of the structure. In this study, new design equations considering the influence of the disequlibriating buoyancy is proposed. In addition, finite element solutions are sought to demonstrate the adequacy of the proposed design formulae in estimating the actual internal forces considering the structure as either rigid or flexible. It has been found that member forces are decreased approximately to around 55% for flexible model when compared with the rigid one.

Analysis on Interaction of Regular Waves and a Circular Column Structure (전산유체역학을 이용한 규칙파와 원형 기둥 구조물의 상호작용 해석)

  • Song, Seongjin;Park, Sunho
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.20 no.2
    • /
    • pp.63-75
    • /
    • 2017
  • In offshore environment, an accurate estimation of a wave-structure interaction has been an important issue for safe and cost effective design of fixed and floating offshore structures exposed to a harsh environment. In this study, a wave-structure interaction around a circular column was investigated with regular waves. To simulate 3D two-phase flow, open source computational fluid dynamics libraries, called OpenFOAM, were used. Wave generation and absorption in the wave tank were activated by the relaxation method, which implemented in a source term. To validate the numerical methods, generated Stokes 2nd-order wave profiles were compared with the analytic solution with deep water condition. From the validation test, grid longitudinal and vertical sizes for wave length and amplitude were selected. The simulated wave run-up and wave loads on the circular column were studied and compared with existing experimental data.

원형 실린더에 의한 3차원 비선형 산란 문제의 수치해석

  • 성홍근;최항순
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 1998.09a
    • /
    • pp.88-93
    • /
    • 1998
  • 수치 파수조기법은 해양구조물에 작용하는 비선형 파랑하중을 해석할 수 있는 가장 유망한 도구로 인식되고 있다. 이러한 수치 파수조기법은 새롭고 다양한 형태의 해양구조물에 대한 정확하고 엄밀한 설계는 물론이고, 실험 조파수조의 여러 가지 문제점을 극복하기 위해서도 매우 필요한 기법이라고 할 수 있다(Kim, 1995). 수치 과수조기법을 위한 경계치 문제 해석법으로는 고차경계요소법을 이용한 해석법이 가장 효율적인 것으로 알려져 있다. (중략)

  • PDF

Analysis of Motions and Wave Loads of Twin-Hull Ships in Waves (쌍동선의 운동 및 파랑하중 해석)

  • Goo, Ja-Sam;Jo, Hyo-Jae;Lee, Seung-Chul
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.4 s.35
    • /
    • pp.132-142
    • /
    • 1999
  • A three-dimensional linearised potential theory is presented for the prediction of motions and dynamic structural responses of twin-hull ships travelling with forward speed in regular waves. Comparisons between theoretical and experimental results are shown for the motion responses and lateral wave loads of an ASR(anti-submarine rescue) catamaran. In general, good agreement between theory and experiment is found except for some discrepancies that are believed to be caused by neglect of forward speed effects on free surface.

  • PDF