• Title/Summary/Keyword: 파랑충격

Search Result 37, Processing Time 0.02 seconds

Development of Structural Analysis System of Bow Flare Structure(2) - Prediction of Wave Impact Load Area - (선수 구조부 구조해석 시스템 개발(2) - 파랑충격하중 면적의 추정 -)

  • S.G. Lee;J.W. Park
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.36 no.4
    • /
    • pp.87-94
    • /
    • 1999
  • Empirical design is still used to avoid a structural damage because impact phenomenon and structural behaviour due to wave impact load can not examined accurately. The damage due to wave impact load is largely affected by impact pressure impulse and impact load area. The objective of this study is, as the second step, to develop an efficient scantling program of bow flare structure, and to predict its impact load area by comparing maximum dented deformations at center of idealized panel structure model of bow flare structure of 300k DWT VLCC using LS/DYNA3D code, which will be used for its verification of dynamic structural analysis, as the next step. Through this study, the impact load area was estimated as $1.5s{\times}1.5s$ stiffener space(s) in the case of panel with stiffeners and as $2.5s{\times}2.5s$, with stringers, under impact pressure curve with peak height 6.5MPa, tail height 1.0MPa, and duration time 5.0msec.

  • PDF

Development of Structural Analysis System of Bow Flare Structure(1) - Prediction of Wave Impact Load Characteristics - (선수 구조부 구조해석 시스템 개발(1) - 파랑충격하중 특성의 추정 -)

  • S.G. Lee;M.S. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.36 no.4
    • /
    • pp.77-86
    • /
    • 1999
  • The bow flare structure of a ship is designed considering wave impact loads largely caused by relative motion of the ship and wave at rough sea. Empirical design is still used because impact phenomenon and structural behaviour due to wave impact load can not examined accurately. The objective of this study is, as the first step, to predict wave impact loads giving the structural damages to the bow flare structure from the damage data inversely, using dynamic nonlinear finite element code LS/DYNA3D, and to perform various parametric studies of wave impact pressure curve for its characteristics, such as peak height, duration time, tail height, rise time, etc.. The followings were obtained from this study: Dynamic structural responses against wave impact loads are largely affected by impact pressure impulse whose amount during duration time until peak deformation is very important.

  • PDF

Structural Analysis of a Breakwater in Wave and Seismic Loads (파랑하중과 지진하중하의 방파제 구조해석)

  • Cho, Kyu-Nam
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.1
    • /
    • pp.45-52
    • /
    • 2009
  • In this paper, a guideline for designing breakwater in wave loads and in seismic loads is proposed. A simple model structure in breaking wave zone is examined using Morison equation in consideration with the effect of an impact load, for evaluation of the wave loads. As the impact load effect is not significant, pressure distributions according to Goda are applied for evaluation of wave loads on breakwater. Structural behavior of breakwater in wave loads can be obtained using the Goda method, as well. For seismic analysis, Ofunato and Hachinohe models, as well as an artificial seismic acceleration loads model, are adopted. Soil-structure interaction analysis is carried out to find the seismic load effect. It is found that, in certain cases, structural deformation in wave loads is in the same level as deformation that in seismic loads. Thus, it is our recommendation that these two loads are considered at the same level in breakwater design.

Evaluation of Structural Response of Cylindrical Structures Based on 2D Wave-Tank Test Due to Wave Impact (파랑충격력에 의한 원형실린더구조물의 구조응답평가)

  • Lee, Kangsu;Ha, Yoon-Jin;Nam, Bo Woo;Kim, Kyong-Hwan;Hong, Sa Young
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.5
    • /
    • pp.287-296
    • /
    • 2020
  • The wave-impact load on offshore structures can be divided into green-water and wave-slamming impact loads. These wave impact loads are known to have strong nonlinear characteristics. Although the wave impact loads are dealt with in the current classification rules in the shipping industry, their strong nonlinear characteristics are not considered in detail. Therefore, to investigate these characteristics, wave-impact loads induced by a breaking wave on a circular cylinder were analyzed. A model test was carried out to measure the wave-impact loads due to breaking waves in a two-dimensional (2D) wave tank. To generate a breaking wave, the focusing wave method was applied. A series of 2D tank tests under a horizontal wave impact was carried out to investigate the structural responses of the cylindrical structure, which were obtained from the measured model test data. According to the results, we proposed a structural damage-estimation procedure of an offshore tubular member due to a wave impact load. Furthermore, a recommended wave-impact load is suggested that considers the minimum required thickness of each member. From the experimental results, we found that the required minimum thickness is dependent on the impact pressure located in a three-dimensional space on the surface of a tubular member.

Development of Structural Analysis System of Bow Flare Structure(3) - Dynamic Structural Analysis - (선수 구조부 구조해석 시스템 개발(3) - 동적 구조해석 -)

  • S.G. Lee;C.K. Park
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.37 no.1
    • /
    • pp.99-110
    • /
    • 2000
  • The damages due to wave impact loads are largely affected by impact pressure impulse and impact load area. The objective of this study is, as the third step, to perform dynamic structural analysis of bow flare structure of 300,000 DWT VLCC using LS/DYNA3D code, and to verify its dynamic structural behaviors. The impact load areas of stiffener space $1.5s{\times}1.5s$ and $2.5s{\times}2.5s$ are applied to bow flare structure part with relatively flexible stiffeners, and with stiff members such as stringers, webs etc., respectively, under the wave impact load with peak height 6.5MPa, tail 1.0MPa, and duration time 5.0msec. Through the dynamic structural analysis in this study, it might be thought that the structural strength of bow flare structure is generally sufficient for these wave impact load and areas, except that large damages were found at bow flare structure area with flexible wide span stiffeners.

  • PDF

Numerical Analysis of Wave Impact Forces in Numerical Wave Basin (수치파 수조를 이용한 파랑 충격력 수치해석)

  • Shin, Young-Seop;Hong, Key-Yong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.205-210
    • /
    • 2006
  • The impact forces of the highly nonlinear waves are one of the important factors in designing the ocean structures. The impact forces are very difficult to analyze numerically and experimentally because they are impulsive in magnitude and occur instantaneously. In this study the numerical program based on N.S. equations are used to investigate the impact forces of steep waves where the waves are gene rated by the wave maker in the numerical wave basin. The arbitrary steep waves are generated by the superposition of waves of single frequency and the impact forces on vertical cylinder are simulated on the multiblock grids. V.O.F. and the local height function methods are used to track the free surfaces. To validate the numerical analysis the numerical results are compared with the experimental ones and the acceptable agreements are found. It is thought that more studies on the simulations of the incoming breaking waves and the impact forces on the vertical cylinder should be made to obtain the useful results to be applied in the offshore design.

  • PDF

A Study on the Behaviour Characteristics of the Saemanguem Sea Dyke Coastal Covering Stones by Sea Waves (파랑에 의한 새만금 방조제 해측 피복석 거동특성 연구)

  • Baek, SeungChul;Lee, SoYeol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.7
    • /
    • pp.67-76
    • /
    • 2011
  • In this present study, to evaluate a behavior characteristics of the sea dyke coastal covering stone by sea waves. sea waves act on coastal structures as an impact load. During impact loading, erosion and bluff slumping occur in the coastal structures. Also, the covering stone are worn down by wave impact. The sea dyke has been used near coastal region for protection of infra-structure since 1970s in Korea. The sea dyke consist of dredged sand and covering stone mainly. The damage type of covering stone has been reported since 1970s. However, the interaction of impact load by sea wave with the covering stone has not been investigated yet properly. Mainly damage type of covering stone is an abrasion. But the study of covering stone abrasion is not sufficient. Hence, In this study, it was analyzed the interaction of impact load by sea wave and the covering stone during sea wave action on coastal structures. In order to analyze the behavior characteristics of coastal covering stone considering the magnitude and period of impact loading and to evaluate the displacement increment of covering stone during impact load, numerical analysis was carried out considering impact loading by sea wave.

Stability Analysis of a Small Racing Boat in Steady Wind and Wave Impact (바람과 파랑충격을 고려한 소형경주정의 안정성해석)

  • S.H. Chun;H.H. Chun;M.K. Ha;M. Nakato
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.36 no.1
    • /
    • pp.1-14
    • /
    • 1999
  • The simulation results of a small racing boat racing in steady wind and encountering waves are investigated by Nakato & Ha. The simulation of the race running is realized by referring the measured data of boats and the motions are described by a set of equations of motion in six degree of freedom as generals used in the aerodynamics. In this report, Nakato & Ha's motion equations are modified by equipping the flaps to generate the lift. The flaps of the racing boat could restrain considerably the boat from capsizing caused by superposed external disturbances, wind and encountering waves.

  • PDF

A Study on the Dynamic Strength Analysis of the Hull Girder Among Waves Considering Non-Linear Hydrodynamic forces (선박의 비선형 유체력을 고려한 파랑중 동적 강도 해석법에 관한 연구)

  • Ku-Kyun Shin;Sa-Soo Kim;Sung-Wan Son
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.4
    • /
    • pp.152-172
    • /
    • 1992
  • The ship sailing among waves are suffered the various wave loads that comes from its motion throughout its life. Because there are dynamic, the analysis of ship structure must be considered as the dynamic problem precisely. In the rationally-based design, the dynamic structural analysis is carried out using dynamic wave loads provided from the results of the ship mouton calculation as the rigid body. This method is based on the linear theory assumed low wave height and small amplitude of motion. But at the rough sea condition, high wave height, relatively ship's depth, is induced the large ship motion, so the ship section configulation below water line is rapidly changed at each time. This results in non-linear problem. Considering above situation in this paper, the strength analysis method is introduced for the hull glider among waves considering non-linear hydrodynamic forces. This paper considers that the overall or primary level of the ship structural dynamic loading and dynamic response provided from the non-linear wave forces, and bottom and bow flare impact forces estimated by momentum slamming theory, in which the ship is idealized as a hollow thin-walled box beam using thin-walled beam theory and the finite element method. This method is applied to 40,000 Ton Double-Skin Tanker and attention is paid to the influence of the response of ship speed, wave length and wave height compared with linear strip theory.

  • PDF

소형계류시설 및 부유체 운동해석을 위한 계측시스템 개발

  • Park, Gyeong-Cheol;Yang, Hye-Jeong;Seong, Yu-Chang
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2012.06a
    • /
    • pp.183-185
    • /
    • 2012
  • 선박의 다양화와 부두의 제한성으로 인하여 수심이 얕은 수역이나 협소한 부두에 접안 시 소형계류시설 및 부유체를 이용하여 해상 공간을 활용하고 있다. 이를 통하여 다양한 장소에서 접안이 가능하며 나아가 상당한 비용절감 효과를 가질 수 있다. 그러나 소형계류 및 부유체를 활용한 선박의 접안 시 파랑에 의해 부유체와 선박간 충격이 발생할 수 있고 이러한 충격이 대형사고로 발생할 수 있는 위험이 상존함에 따라 계류재 및 부유체의 파랑에 의한 움직임 예측과 분석이 필요하다. 본 연구에서는 계류재 및 부유체 운동해석을 위한 3차원 운동 정보와 가속도를 측정함으 써 거동 특성에 대한 기초 자료를 제공하는 계측시스템을 개발하였고, 이 시스템의 구성 및 원리 등에 대하여 소개하고자 한다.

  • PDF