• Title/Summary/Keyword: 파랑운동

Search Result 267, Processing Time 0.031 seconds

Numerical Analysis of Wave-Current Interaction Phenomenon Using the Spectral Element Method (스펙트랄요소법(SEM)을 이용한 파랑-조류 상호작용 현상 수치해석 연구)

  • Sung, Hong-Gun;Hong, Key-Yong;Kyung, Jo-Hyun;Hong, Sa-Young
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.181-186
    • /
    • 2006
  • In this paper, generation mechanisms of ocean freak waves are briefly introduced in the context of wave-current interaction phenomena. The present model of the fluid motion is based on the Navier-Stokes equations incorporating velocity-pressure formulation because of need to model the nonlinear wave interaction with spatially non-uniform current field. In order to deal with the free surface motion, an Arbitrary Lagrangian-Eulerian (ALE) description is adopted. As an accurate and efficient numerical tool, the spectral element method is presented with general features and specific treatment for the wave-current interaction problem. As an intermediate stage of development, solution procedure and characteristics aspects of the present modeling and numerical method are addressed in detail, and preliminary numerical results prove its accuracy and convergence.

  • PDF

Frequency Domain Analysis for Dynamic Response of Floating Structures Subject to Wave Loading (파랑하중을 받는 부유식 구조물의 동적거동에 대한 주파수영역 해석)

  • Kwon Jang Sub;Paik In Yeol;Park Jung Il;Chang Sung Pil
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.17 no.3
    • /
    • pp.138-148
    • /
    • 2005
  • Dynamic response of floating structures such as floating body and floating bridges subject to wave load is to be calculated in frequency domain. Added mass coefficient, damping coefficient and wave exciting force are obtained numerically from frequency domain formulation of linear potential theory and boundary element method for a floating body which is partially submerged into water and subjected to wave force. Next, the equation of motion for the dynamic behavior of a floating structure which is supported by the floating bodies and modeled with finite elements is written in frequency domain. hker a hemisphere is analyzed and compared with the published references as examples of floating bodies, the hydrodynamic coefficients for a pontoon type floating body which supports a floating bridge are determined. The dynamic response of the floating bridge subject to design wave load can be solved using the coefficients obtained for the pontoons and the results are plotted in the frequency domain. It can be seen from the example analysis that although the peak frequency of the incoming wave spectrum is near the natural frequency of the bridge, the response of the bridge is not amplified due to the effect that the peak frequency of wave exciting force is away from the natural frequency of the bridge.

Analysis of Motion Response and Drift Force in Waves for the Floating-Type Ocean Monitoring Facilities (부유식 해상관측시설의 파랑중 운동 및 표류력 해석)

  • YOON Gil Su;KIM Yong Jig;KIM Dong Jun;KANG Shin Young
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.31 no.2
    • /
    • pp.202-209
    • /
    • 1998
  • A three-dimensional numerical method based on the Green's integral equation is developed to predict the motion response and drift force in waves for the ocean monitoring facilities. In this method, we use source and doublet distribution, and triangular and rectangular eliments. To eliminate the irregular frequency phenomenon, the method of improved integral equation is applied and the time-mean drift force is calculated by the method of direct pressure integration over the body surface. To conform the validity of the present numerical method, some calculations for the floating sphere are performed and it is shown that the present method provides sufficiently reliable results. As a calculation example for the real facilities, the motion response and the drift force of the vertical cylinder type ocean monitoring buoy with 2.6 m diameter and 3,77 m draft are calculated and discussed. The obtained results of motion response can be used to determine the shape and dimension of the buoy to reduce the motion response, and other data such as the effect of motion reduction due to a damper can be predictable through these motion calculations. Also, the calculation results of drift force can be used in the design procedure of mooring system to predict the maximum wave load acting on the mooring system. The present method has, in principle, no restriction in the application to the arbitrary shape facilities. So, this method can be a robust tool for the design, installation, and operation of various kinds of the floating-type ocean monitoring facilities.

  • PDF

Finite Element Analysis for Multiple Floating Breakwaters (다열 부유식 방파제의 유한요소 해석)

  • 정신택;박우선;이호찬
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.14 no.4
    • /
    • pp.257-264
    • /
    • 2002
  • This paper is concerned with the analysis of wave reflection and transmission from multiple floating breakwaters. Linear potential theory was used for modeling wave field, and the behaviors of the floating breakwaters was represented as linearized equation of motions. The boundary value problem for the wave field was discretized by Galerkin technique. The radiation condition at infinity was modeled as infinite elements developed by Park et al.(1991). The validation of the developed model was given through the comparison with hydraulic experimental data conducted by Park et al.(2000). The possibility for the application of multiple floating breakwaters was also discussed based on the numerical experiments.

Analysis of Dynamic Behavior of Floating Offshore Wind Turbine System (해상 부유식 풍력 타워의 동적거동해석)

  • Jang, Jin-Seok;Sohn, Jeong-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.1
    • /
    • pp.77-83
    • /
    • 2011
  • In this study, the dynamic modeling of floating offshore wind turbine system is reported and the dynamic behavior of the platform for the offshore wind turbine system is analyzed. The modeling of the wind load for a floating offshore wind turbine tower is based on the vertical profile of wind speed. The relative Morison equation is employed to obtain the wave load. ADAMS is used to carry out the dynamic analysis of the floating system that should withstand waves and the wind load. Computer simulations for four types of tension leg platforms are performed, and the simulation results for the platforms are compared with each other.

Numerical Analysis of Offshore Installation Using a Floating Crane with Heave Compensator in Waves (Heave Compensator를 고려한 파랑 중 해상 크레인 설치작업 수치해석)

  • Nam, Bo-Woo;Hong, Sa-Young;Kim, Jong-Wook;Lee, Dong-Yeop
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.1
    • /
    • pp.70-77
    • /
    • 2012
  • In this study, a numerical analysis of offshore installation using a floating crane with heave compensator is carried out in time domain. The motion analysis of crane vessels is based on floating body dynamics using convolution integral and the crane wire is treated as simple spring. The lifted structure is assumed as a rigid body with 3 degree-of-freedom translational motion. The heave compensator is numerically modelled by the generalized spring-damper system. Firstly, forced motion simulations of crane wire system are carried out to figure out the basic principle of heave compensator. The transfer function of crane wire system is obtained and effective wave period of heave compensator are found. Then, coupled analysis of crane vessel, crane wire, and lifted structure are performed in regular and irregular sea conditions. Two different crane vessels and two lifted structures (suction pile and manifold) are considered in this study. Through a series of numerical calculations, the effective zone of heave compensator is investigated with respect to wave period and crane wire length.

Lowering Simulation using Floating Crane in Waves (파랑 중 해상 크레인의 하강 작업 수치 시뮬레이션)

  • Nam, Bo-Woo;Hong, Sa-Young;Kim, Byoung-Wan;Lee, Dong-Yeop
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.1
    • /
    • pp.17-26
    • /
    • 2012
  • A coupled analysis of a floating crane barge with a crane wire and hanging structure is carried out in thetime domain. The motion analysis of the crane barge is based on the floating multi-body dynamics, and thecrane wire is modeled as a simple spring tension. The hanging structure is assumed to be a rigid body with 3 degree-of-freedom translational motion. In this study, numerical simulations were conducted at three different stages. First, the developed code was validated by comparing the time-domain motion response of a crane barge with the frequency-domain results. Then, a coupled analysis of a crane barge and simple structure hanging by the crane wire was performed using the present scheme. The motion response and wire tension from the present calculations are compared with the results of OrcaFlex. The agreement between the two sets of results isfairly good. Last, lowering simulations in regular and irregular waves were conducted considering buoyancy changes in the hanging structure. The effects of the wave conditions, structure's weight, wire length, and lowering speed on the wire tension are considered.

Tidal Variation of Waves in Kyung-Gi Bay (경기만 조석조건에서의 파랑변이)

  • 김지웅
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.12 no.2
    • /
    • pp.87-95
    • /
    • 2000
  • Spectral wave models are applied to the area of Kyung-gi bay with two different combinations. One combination assumes a constant tidal elevation over the whole region when applying the wave model to the area. In this case no tidal currents exist in any place. The other combination employs tide model as well as wave model so that tidal condition is defined at every computation time when wave modelling is carried out. Significant wave heights and wave directions are shown for these two cases. With these two different constraints of tidal variation, the results are checked and compared with each other. Both results are found significantly different from each other.

  • PDF

Waveload Analysis for Heeled Barges with Flooded Compartments (손상침수로 자세변화된 바지형 선박의 파랑하중해석)

  • Hong, Do-Chun;Hong, Sa-Young
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.4 s.142
    • /
    • pp.379-387
    • /
    • 2005
  • A ship may suffer sinkage and heel due to flood in a compartment caused by damage on a deck. The motion and waveloads of the heeled ship floating in waves have been analyzed by making use of a three dimensional potential theory taking account of the hydrodynamic pressure in the flooded compartments. The shear forces and bending moments due to radiation-diffraction waves have been calculated by the direct integration of the 3-d hydrodynamic pressure on the outer and inner hulls of floating barges. The motion responses and the relative flow rate across the mean free surface of the water in the flooded compartments are also presented.

Boundary Element Analysis on the Hydraulic Characteristics of Submerged Breakwater with Trapezoidal Type (사다리꼴형상 잠제의 수리특성에 관한 경계요소해석)

  • Kim Nam-Hyeong;Yang Soon-Bo
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.6 no.4
    • /
    • pp.45-51
    • /
    • 2003
  • The reflection and transmission of submerged breakwater with trapezoidal type are computed numerically using boundary element method. The analysis method is based on the wave pressure function with the contlnuit? in the analytical region including fluid and porous structures. Wane motion within the porous structures is simulated by introducing the linear dissipation coefficient and added mass coefficient. The results indicate that transmission and reflection coefficient are determined due to the change of slope of submerged breakwater with trapezoidal type.

  • PDF