• Title/Summary/Keyword: 파랑요소

Search Result 228, Processing Time 0.025 seconds

Boundary Element Analysis for Diffraction of Water Waves with Vertical Cylinders (연직 해양구조물로 인한 파랑회절의 경계요소 해석)

  • 김성득;이성대;박종배
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.1 no.1
    • /
    • pp.63-70
    • /
    • 1989
  • A numerical analysis of the wave characteristics of wave diffraction and the interference effects for a single cylinder and for two cylinders were carried out by the Boundary Element Method using constant elements. The Present investigation was limited to the diffraction of 2-dimensional linear waves by vertical impervious cylinders. Numerical model has been written to calculate the wave diffraction coefficient both on the boundary of the cylinders and at points away from it. The accuracy of the computational scheme was investigated by comparing the analytical results of the other reseraches. Good agreement was observed.

  • PDF

Analysis of Bragg Reflection with Two-Dimensional Finite Element Method (2차원 유한요소법을 이용한 파랑의 Bragg반사 해석)

  • Cho, Yong-Sik;Jeong, Woo-Chng
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.6
    • /
    • pp.677-684
    • /
    • 2002
  • In this study, a finite element model is employed to simulate the diffraction of waves caused by a change of water depths. The model is firstly applied to the estimation of reflection coefficients of monochromatic waves over a sinusoidally varying topography. Predicted coefficients are compared with those of the eigenfunction expansion method and laboratory measurements. A good agreement is observed. The model is then used to investigate effects of heights of bottom topography and number of ripples on variation of reflection coefficients of monocromatic water waves.

Internal Wave Generation with Level Set Parallel Finite Element Approach (레블셋 병렬유한요소 기법을 이용한 파랑 내부 조파)

  • Lee, Haegyun;Lee, Nam-Joo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.6B
    • /
    • pp.379-385
    • /
    • 2012
  • Recent development of computing power and theoretical advances in computational fluid dynamics have made possible numerical simulations of water waves with full Navier-Stokes equations. In this study, an internal wave maker using the mass source function approach was combined with the level set finite element method for generation of waves. The model is first applied to the two-dimensional linear wave generation and propagation. Then, it is applied to the three-dimensional simulation of the same problem. To effectively utilize computational resources and enhance the speed of execution, parallel algorithms are developed and applied for the three-dimensional problem. The results of numerical simulations are compared with theoretical values and good agreements are observed.

Control of Wave Screening Performance of Floating Breakwaters (부유식 방파에의 파랑 차단 성능 제어)

  • 양우석;조원철;박우선
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.13 no.3
    • /
    • pp.230-236
    • /
    • 2001
  • The numerical investigations on the wave-screening characteristics of floating breakwaters are presented. The fluid motion is idealized as linearized, two dimensional potential flow. A finite element model is adopted to analyze the performance of floating breakwaters. Numerical experiments are carried out for two type floating breakwater. One is a conventional pontoon type breakwater with rectangular cross-section, and the other is a side float breakwater which consists of two rectangular shaped floats connected to each other by a frame. To improve the performance of the floating breakwaters, especially for long-period wave conditions, numerical experiments are carried out for the cases attaching the thin plates at the bottom of folats in the vertical direction.

  • PDF

A Hybrid Boundary Integral Equation Model Applied for the Calculation of Normal Incident Waves (혼합경계적분 요소법을 사용한 직교입사파랑의 반사률계산 모델)

  • 서승남;김상익
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.3 no.3
    • /
    • pp.170-175
    • /
    • 1991
  • In order to calculate reflection coefficients of surface waves due to underwater obstacles, the hybrid boundary integral equation method is used. Numerical results based on the linear element are verified to the exact solutions for a flat bottom. Reflection coefficient and transmission coefficients for a step are compared to Young's results and the results by EFEM (Kirby et al., 1987), in which reflection coefficients decrease to zero as the periods of incident waves decrease. Reflection coefficients for a sinusiodal hump located on a constant depth increase due to the interaction between humps.

  • PDF

Numerical Experiment of Wave Attenuation considering Behavior of Vegetation Zone (식생대의 거동을 고려한 파랑감쇠의 수치실험)

  • Jeong, Yeon Myeong;Hur, Dong Soo
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.28 no.4
    • /
    • pp.232-239
    • /
    • 2016
  • In this study, the two-way coupled analysis method of LES-WASS-2D and DEM has been newly developed to review numerically wave attenuation due to behavior of vegetation zone could not yet applied in numerical analysis. To verify the applicability, two-way coupled analysis method is analyzed comparing to the experimental result about characteristics of wave attenuation using vegetation. Numerically analyzed behavior and characteristics of wave attenuation according to height length, distribution length, spacing of vegetation zone and incident wave conditions. It was confirmed to be effective of 3~4% wave attenuation were increased height length and distribution length, narrowed spacing of vegetation. Finally, this study is applicable to behavior and wave attenuation prediction of vegetation zone.

Numerical Computations on Hydroelastic Response of a Vertical Cylinder in Extreme Wave Loads (유탄성 응답을 고려한 수직 실린더에 작용하는 극한파의 파랑하중 수치해석)

  • Hong, Sa-Young;Kim, Byoung-Wan;Kyoung, Jo-Hyun
    • Journal of Navigation and Port Research
    • /
    • v.31 no.1 s.117
    • /
    • pp.21-27
    • /
    • 2007
  • The wave load and its influence on the response of offshore structure have been well investigated through the statistical approach based on the linear theory. The linear approach has a limitation to apply the extreme condition such as extreme wave, which corresponds to extreme value of wave spectrum. The main topic of present study is to develop an efficient numerical method to predict wave load induced by extreme wave. As a numerical method, finite element method based on variational principle is adopted. The frequency-focusing method is applied to generate the extreme wave in the numerical wave tank. The wave load on the bottom mounted vertical cylinder is investigated. The hydroelastic response of the vertical cylinder is also investigated so as to compare the wave loads with the rigid body case in the extreme wave condition.

A Prediction Method of Wave Deformation in Harbors Using the Mild Slope Equation (완경사 방정식을 이용한 항내의 파고예측)

  • 최선호;박상길
    • Water for future
    • /
    • v.26 no.2
    • /
    • pp.39-48
    • /
    • 1993
  • Since major reason of disaster in coastal area is wave action, prediction of wave deformation is one of the most important problems to ocean engineers. Wave deformations are due to physical factors such as shoaling effect, reflection, diffraction, refraction, scattering and radiation etc. Recently, numerical models are widely utilized to calculate wave deformation. In this study, the mild slope equation was used in calculatin gwave deformation which considers diffraction and refraction. In order to slove the governing equation, finite element method is introduced. Even though this method has some difficulties, it is proved to predict the wave deformation accurately even in complicated boundary conditions. To verify the validity of the numerical calculation, experiments were carried out in a model harbour of rectangular shape which has mild slope bottom. The results by F.E.M. are compared with those of both Lee's method and the experiment. The results of these three methods show reasonable agreement.

  • PDF

A Hydraulic Model Test of Wave Transformation in the Surf Zone (쇄파대에서의 파랑 변형에 대한 수리모형실험 연구)

  • 정신택;채장원;정원무
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 1991.07a
    • /
    • pp.40-45
    • /
    • 1991
  • 항만 건설, 매립, 임해 발전소의 걸선, 호안 축조 및 신공간 개발 등 연안역 개발시 설계 환경요소인 파랑을 정확히 예측함으로써 이러한 사업을 경제적으로 수행 할 수 있다. 특히 이들 구조물은 대부분 쇄파대내에 위치하므로 쇄파후의 파랑변형 및 Runup 등을 파악하여야 한다. 본 연구에서는 조파수조를 이용하여 쇄파후의 파고 및 Runup 등을 관측하여 경험식 및 해석해와 비교하였다.(중략)

  • PDF

파랑하중을 적용한 3차원 플로팅 구조물 해석

  • Song, Hwa-Cheol;Park, Jong-Seo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2011.06a
    • /
    • pp.192-194
    • /
    • 2011
  • 육상의 자원고갈로 인한 해양자원의 관심 증가로 플랜트 사업의 수요가 증가함에 따라 플로팅 구조물의 안전성 확보를 위한 구조해석이 필요하다. 이 연구에서는 범용 유한요소 프로그램인 ABAQUS를 사용하여 3차원 플로팅 구조물의 상부구조물에 정적하중과 진폭의 크기가 다른 파랑하중을 적용하여 모멘트 및 변위를 비교한다.

  • PDF