• Title/Summary/Keyword: 파랑감쇠

Search Result 85, Processing Time 0.028 seconds

Analysis of Wave Transformation and Velocity Fields Including Wave Breaking due to the Permeable Submerged Breakwaters (수중투과성구조물에 의한 쇄파를 수반한 파랑변형 및 유속장 해석)

  • 김도삼;이광호;김정수
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.14 no.2
    • /
    • pp.171-181
    • /
    • 2002
  • Among various numerical methods of wave transformations including wave breaking by structure, models using VOF(Volume Of Fluid) method to trace free surface are getting into the spotlight recently. In order to analyze wave transformations and velocity of the wave fields due to the permeable submerged breakwater(PSB), This study applied VOF method to the two-dimensional wave channel installed line-source to generate waves and added dissipation zone to offer a non-reflective boundary. Hydraulic experiments was performed to obtain the application of two-dimensional numerical wave channel. The results of numerical experiments using the two-dimensional wave channel agree well with the experimental data. It was shown that vortices are formed behind the PSB, and in case of the 2-rowed PSB they also are occurred in between PSBs, strongly non-linear waves are developed on the crown of the PSB, and the direction of velocities in porous media is determined by the shape of free surface.

Effects of Seabed Soil Parameters on Wave Dispersion Relationship (해저지반의 지반상수가 분산관계식에 미치는 영향)

  • Yang, Soonbo;Kim, Namhyeong;Ko, Yongsu
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2014.06a
    • /
    • pp.258-259
    • /
    • 2014
  • It is needed the introduction of a new wave dispersion relationship considering the condition of seabed to examine closely the interaction between wave and seabed. In this study, a wave dispersion relationship is newly developed considering the condition of seabed such as permeability and displacement. Wave damping rates are compared and analysed according to the various soil parameters such as seabed soil thickness, elastic modulus, saturation, permeability, and porosity.

  • PDF

Numerical Analysis for Wave Propagation and Sediment Transport with Coastal Vegetation (연안식생에 의한 표사이동 특성에 관한 수치해석)

  • Lee, Seong-Dae
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.5
    • /
    • pp.18-24
    • /
    • 2007
  • The environmental value of coastal vegetation has been widely recognized. Coastal vegetation such as reed forests and seaweed performs several useful functions, including maintaining water quality, supporting fish (and, thus, fisheries), protecting beaches and land from wave attack, stabilizing sea beds and providing scenic value. However, studies on the physical and numerical process of wave propagation, sediment transport and bathymetric change are few and far between compared to those on the hydrodynamic roles of coastal vegetation. In general, vegetation flourishing along the coastal areas attenuates the incident waves through momentum exchange between stagnated water mass in the vegetated area and rapid mass in the un-vegetated area. This study develops a numerical model for describing the wave attenuation and sediment transport in a wave channel in a vegetation area. By comparing these results, the effects of vegetation properties, wave properties and model parameters are clarified.

An Analysis of Rolling Performance for a Barge-Type FPSO (바아지형 FPSO의 횡운동 성능에 대한 해석)

  • Choi, Yoon-Rak;Kim, Jin-Ha;Kim, Young-Su
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.3
    • /
    • pp.25-30
    • /
    • 2005
  • To predict rolling performance for a barge-type FPSO, the evaluation of correct nonlinear roll damping is critical. The square section of FPSO causes a considerable viscous damping effect. Free roll decay tests were carried out to estimate nonlinear roll damping for a barge-type FPSO, under three different conditions. The roll motion RAO was deduced from model tests in the wave condition of the wideband spectrum. In numerical calculation, the quadratic damping was considered as equivalent linear damping, using the results of free roll decay test. Tested roll performance in the JONSWAP wave spectrum was compared with numerical results. These two results shaw good agreement, in spite of the proximity of peak wave period and roll natural period.

Wave Control by Tide-Adapting Submerged Breakwater (조위차 극복형 잠제의 파랑제어)

  • Lee, Woo-Dong;Jeong, Yeon-Myeong;Hur, Dong-Soo
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.6
    • /
    • pp.573-580
    • /
    • 2019
  • A submerged breakwater is a coastal structure built under water with excellent landscape. The depth of the crest of the breakwater should be maintained at more than a certain level in order for the submerged breakwater to control waves properly. This means that the effect of blocking waves deceases sharply at high tide in coastal areas with large tidal differences. In this study, we proposed a Tide-Adapting Submerged Breakwater (TA-SB) to overcome this problem, and then we conducted hydraulic model experiments to evaluate the performance of the TA-SB for controlling waves. The experimental results showed that the tapered wings attached to the crest of the TA-SB helped induce forced breaking waves. In particular, they were very effective in blocking waves and attenuating wave energy at high tide. In addition, the wave control performance of the proposed TA-SB was far superior to the Tide-Adapting Low-Crested Structure (TA-LCS) of the previous study.

Wave Breaking Characteristics over Composite Slope Section (복합단면지형에서의 파랑의 쇄파변형특성)

  • 권혁민;요시미고다;최한규
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.7 no.2
    • /
    • pp.135-140
    • /
    • 1995
  • The procedure of wave energy dissipation due to breaking has been investigated with trains of the regular wave. To obtain the data for wave breaking and its deformation, experiments have been conducted by utilizing a horizontal step adjoining to a combined slope of 1/20 and 1/10. After breaking the wave height decreases by dissipation but attains a stable value at some distance from the breaking point Experimental results show that the stable wave is considerably affected by the wave period. The study gives the general form of stable wave height A new one-dimensional wave deformation model is proposed. being coupled with an approximated shoaling coefficient before wave breaking and the new energy dissipation term after breaking. It was compared with the experimental data. It predicts well the wave height deformation before and after wave breaking even on the abrupt change of the depth.

  • PDF

Analysis on the Wave Characteristics of Submerged Breakwater Considering Energy Dissipation of Seabed (해저면의 에너지 감쇠를 고려한 불투과 잠제의 파랑특성해석)

  • Kim Nam-Hyeong;Yang Soon-Bo;Park Min-Su;Kim Sang-Jin
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.7 no.3
    • /
    • pp.131-136
    • /
    • 2004
  • The transmission coefficients of impermeable submerged breakwater on permeable bottom are computed numerically using a boundary element method. The analysis method is based on the wave pressure function with the continuity in the analytical region including fluid and structures. Wave motion over permeable bottom is simulated by introducing a linear dissipation coefficient and an added mass coefficient. The results indicate that the wave over permeable bottom travels being damped, and that transmission coefficients for permeable bottom are smaller than those for impermeable bottom, and result from the change of width and height of submerged breakwater.

  • PDF

A Parabolic Approximation Model for Wave Deformation Combined Refraction, Diffraction, and Breaking (파랑(波浪)의 굴절(屈折), 회절(回折) 및 쇄파변형(碎波變形)에 관한 포물형근사모형(抛物形近似模型))

  • Lee, Dong Soo;Lee, Jong Sup;Park, II Heum
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.3
    • /
    • pp.619-633
    • /
    • 1994
  • A wave deformation model for general purpose combined refraction, diffraction, and breaking is developed in the shallow water. A parabolic approximation equation considered a higher order diffraction term is derived from the previous mild slope equation. A wave energy dissipation term due to bottom friction and breaking is introduced from the turbulence model. The Crank-Nicoloson implicit scheme is used in the numerical calculation, then the solutions are compared with the various hydraulic experiment data in the circular, the elliptic shoal, and the surf zone. The wave height decay in the surf zone is sensitively affected by the incident wave steepness, and the wave height variation around the elliptic shoal is well explained by the non-linear dispersion relation and the wave energy dissipation term. The model is also applied to a field coastal area and reasonable results are obtained.

  • PDF

Motions of Semi-submersible Drilling Rigs in Deep Water (Semi-submersible 석유시추선(石油試錐船)(부체해양구조물(浮體海洋構造物))의 운동(運動) -계산방법(計算方法), 해석(解析) 및 응용(應用))

  • Jin-S.,Chung
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.11 no.2
    • /
    • pp.23-40
    • /
    • 1974
  • Semisubmersible 해양석유시추선의 기본설계에 필요한 파랑중(波浪中)에서 운동(運動)을 계산(計算)하는 이론적방법(理論的方法)을 제시하고 "MOHOLE"과 "SEDCO 1350-F" 석유시추선들의 운동(運動)을 해석하였다. 이 규칙파에서 운동계산을 불규칙해양파(波)에 적용하는 응용해석을 보여주었다. 현재 이론적 방법으로는 6자유도(自由度)의 운동을 해양파의 어떤 방향에 대해서도 정확히 계산할 수 있으며 계산의 정확성은 수조(水槽)에서의 모형선의 운동측정치와 실선(實船)의 운동측정치와 비교하여 증명되었다. 또 현재의 방법은 종전에 개발된 방법보다 더 일반적(一般的)인 경우를 다룰 수 있으며 결과치도 더 정확하다. 극소운동특성을 갖는 해양석유시추선과 부체(浮體)해양구조물의 설계는 경비가 비싸고 시간이 많이 드는 모형실험보다는 유체역학적(流體力學的) Parameters를 신속 정확히 자주 변경 검토해야 하는 기본설계단계에서는 정확한 이론적인 전자계산기에 의한 계산방법이 절실히 필요하다. 예상(豫想)과 같은 부가질량(附加質量)과 감쇠력(減衰力)은 Resonance 운동주기에서만 운동에 영향을 준다. 해양구조물에 작용하는 파력(波力)은 Froude-Krilov force, 부가질량(附加質量) 및 감쇠력(減衰力)과 Restoring force로 구성했으며 규칙파(規則波)에서의 6자유도(自由度) 운동방정식은 본 논문에 제시된 실험측정치(値)와 실험으로 정확도가 증명된 이론치(値)의 부가질량과 감쇠력 계수(係數)를 써서 풀었다. 규칙파(規則波)에서의 계산된 운동을 Pierson Moskowitz 해양파(海洋波) 스펙트럼과 linear superposition principle에 의해 불규칙해양파(不規則海洋波)에서의 운동을 계산하는데 사용했다. 불규칙파(不規則波)에서의 운동은 운동스펙트럼과 통계적 운동치로 나타냈다. 현재의 계산방법은 실제 기본설게에 사용되어 왔으며, 다른 응용분야는 파랑중(波浪中)에서의 파면(波面)과 Deck간(間)의 Clearance, 계류선(係留線)의 동장력(動張力)계산의 기본 Data 및 기본설계의 Draft 등 Parameters를 통(通)한 Optimum Design 등(等)이다. 파(波)의 한 방향(方向)에 대(對)한 전자계산기(電子計算機)(IBM 370 또는 CDC 6400)에 의한 운동계산은 10초(秒)미만밖에 안걸린다. 또 현재의 계산방법은 해양석유시추선뿐 아니라 이와 비슷한 부체(浮體)해양구조물과 Pipe-laying선(船) 또 Supply Boat설계(設計)에도 쓰여지고 있다.

  • PDF

Wave control fuction and friction damping of a pile-supported floating body (말뚝계류식 부유체의 파랑제어 기능과 마찰감에 관한 연구)

  • 김헌태
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.65-73
    • /
    • 1997
  • The floating body discussed in this study is a 2-D rectangular floating unit supported by four vertical piles at its corners. Structures of this type are frequently seen as floating piers for the crafts in a small harbour. The movement in some modes of motion of such a flating body is fully or partially restrincted by the piles. The authors(Kim et al. 1994) carried out a series of model tests on its wave control function, its motion and the loads on piles. The experimental results showed that a certain degree of intial constriction force which clamps the floating unit in the horizontal direction can effectively reduce the body motion and wave energy without increasing mooring forces. This may be due to the friction forces occuring between the piles and the rollers installed in the mooring equipments on the floating unit. In this paper, we develop a numerical model for the prediction of wave transformation and floating body motions, where the friction force is idealized as the Coulomb friction and linearized into a damping force using the equivalent damping cofficient. This linearization is verified by comparing the results of motions between the linear and nonlinear analysis of the ezuations of motion. We further compare the caculation results by the linear model with the experimental results and discuss the effect of the friction force or the constriction force on body motions and wave energy dissipation.

  • PDF