• Title/Summary/Keyword: 파라미터 최적화

Search Result 728, Processing Time 0.029 seconds

Optimum parameters of 3D integral imaging system (3차원 집적 영상 시스템의 최적 파라미터)

  • Cho, Myungjin;Lee, Byonggook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.1019-1022
    • /
    • 2012
  • Integral imaging is a promising technology for 3D imaging and display. Many parameters affect the performance of 3D integral imaging systems. Enhanced system performance is acquired by optimization of these system parameters with respect to defined performance metrics. In this paper, we present an approach to optimize the performance of 3D integral imaging system in terms of performance metrics under fixed resource constraints. In this analysis, system parameters such as lens numerical aperture, pitch between image sensors, the number of image sensors, the pixel size, and the number of pixels are determined to optimize performance metrics. Wave optics is utilized to describe the imaging process.

  • PDF

HMM Topology Optimization using Model Prior Estimation (모델의 사전 확률 추정을 이용한 HMM 구조의 최적화)

  • ;;Alain Biem;Jayashree Subrahmonia
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.10b
    • /
    • pp.325-327
    • /
    • 2001
  • 본 논문은 온라인 문자 인식을 연속 밀도 HMM의 구조의 최적화 문제를 다룬다. 최적이란 최소한의 모델 파라미터를 사용하여 최소한의 오류를 허용하는 것이라고 정의할 수 있다. 본 연구에서는 HMM 구조의 최적화를 위해 Bayesian 모델 선택 방법론을 사용한다. 먼저 잘 알려진 BIC(Bayesian Information Criterion)을 적용해보고, 그것을 HMM의 복잡한 구조에 적합하도록 본 논문에서 제안한 HBIC(HMM-Oriented BIC)와 비교해본다. BIC는 모델의 사전 확률 분포를 추정하지 않고 다변량 정규분포라고 가정하는데 비해 HBIC는 모델의 각 파라미터로부터 사전 확률을 추정한 후 그것들을 사용함으로써 더 좋은 결과를 얻도록 한다. 실험 결과 BIC와 HBIC 둘 다 기존 방법보다 모델의 파라미터 수를 현저히 감소시킴을 확인했고, HBIC가 BIC에 비해 더 적은 수의 파라미터를 사용해도 비슷한 인식률을 얻을 수 있었다.

  • PDF

Optimized Digital Hearing Aid DSP Parameter Fitting Program Development (최적화된 디지털 보청기 DSP 파라미터 피팅 프로그램 개발)

  • Jarng Soon Suck;Kwon You Jung;Lee Je Hyung
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.367-372
    • /
    • 2004
  • 디지탈 보청기의 DSP 칩 파라미터들은 보청기 사용자에게 가장 최적의 파라미터들로 구성되어져야 한다. Gennum GB3211과 같은 디지탈 보청기용 DSP 칩은 전용 전자 칩으로써 약 90 여개의 제한된 파라미터들을 조합하여 약 47억여개 이상의 거의 무한한 정도의 다양한 경우 수를 대응하도록 제작되었다. 보청기 사용자의 전기-음향 효과를 극대화하기 위해 가장 최적화된 파라미터 피팅 프로그램을 개발하였다. 컴퓨터 입력이 가능한 오디오그램 청력 역치로부터 여러 다른 Formula를 사용할 뿐 만 아니라, 마이크로폰과 리시버의 보정 효과를 모두 포함하는 최적 보청기 피팅 프로그램을 개발하였으며 몇 가지 사례를 적용해 보였다.

  • PDF

Inverse Estimation of Fatigue Life Parameters for Spring Design Optimization (스프링 최적설계를 위한 피로수명 파라미터의 역 추정)

  • Kim, Wan-Beom;An, Da-Wn;Choi, Joo-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.345-348
    • /
    • 2011
  • 구조요소의 설계에서 유한요소해석은 매우 효과적인 방법이다. 이 방법은 시험 수행에 드는 시간과 비용을 줄여준다. 그러나 공정 과정과 환경에 의하여 생기는 입력 물성치들의 변화 때문에 우리는 유한요소해석의 결과를 전적으로 믿어서는 안 된다. 따라서 유한요소해석의 신뢰성을 증명하는 것은 매우 중요하다. 본 연구에서는 현장에 축적된 피로 수명 시험 데이터를 바탕으로 유한요소해석을 이용하여 피로수명 파라미터를 역 추정 하는 연구를 수행하였다. 베이지안 접근법을 이용하여 불확실성 피로 수명 파라미터의 사후분포를 구하였고, 마코프체인몬테카를로(Markov Chain Monte Carlo) 기법을 이용하여 역 추정된 파라미터의 샘플 데이터를 생성하였다. 얻어진 샘플 데이터를 기반으로 새로운 형상의 스프링에 대한 피로 수명을 예측한다. 신뢰성 기반 형상 최적화(RBDO)는 서스펜션 코일 스프링의 요구수명을 만족시키기 위하여 수행된다. 또한 크리깅 근사 모델은 유한요소해석의 연산 량 감소를 위해 이용한다.

  • PDF

A Study on Parameter Tuning for Redis via Parameter Classification and Phased Bayesian Optimization (Redis 파라미터 분류 및 단계적 베이지안 최적화를 통한 파라미터 튜닝 연구)

  • Jo, Seong-Woon;Park, Sang-Hyun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.11a
    • /
    • pp.476-479
    • /
    • 2021
  • DBMS 파라미터 튜닝이란 데이터베이스에서 제공하는 다양한 파라미터의 값을 조율하여, 최적의 성능을 도출하는 과정이다. 데이터베이스 종류에 따라 파라미터 개수가 수십 개에서 수백 개로 다양하며, 각 기능이 모두 다르기 때문에 최적의 조합을 찾는 것은 쉽지 않다. 선행 연구에서는 BO 기법을 사용하여 적절한 파라미터 값을 추출했지만, 파라미터 개수에 비례하여 차원이 커지는 문제가 발생한다. 본 논문에서는 통계적으로 파라미터를 분류하여 탐색 공간을 줄인 다음 단계적으로 BO 를 수행하는 PBO 방식을 제안한다. 파라미터 값을 랜덤하게 할당하여 벤치마킹한 결과값을 군집화한 후, 각 군집별로 파라미터와의 연관성을 분석해 높은 상관관계를 가진 파라미터를 매칭시켜 분류한다. 제안하는 방법론을 검증하기 위하여 8 가지 회귀 모델과의 비교 실험을 통해 제안한 방법론의 우수성을 검증하였다.

Optimizing the bio-optical algorithm for quantifying Chlorophyll-a and Phycocyanin in inland water, Korea (대한민국 담수계의 클로로필a와 피코시아닌 정량화를 위한 분광알고리즘 최적화 연구)

  • Pyo, JongCheol;Pachepsky, Yakov;Lee, Hyuk;Park, Yongeun;Cho, Kyung Hwa
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.101-101
    • /
    • 2017
  • 근래에 대한민국 담수계에 조류 대발생으로 인한 수질악화 문재가 대두되고 있다. 또한 독성물질을 생성하는 남조류종이 우점하는 현상으로인해 수질문제와더불에 생태계와 인간의 건강도 잠재적인 위험을 받고있는 실정이다. 이와같은 조류 대발생으로인한 피해를 최소화하기위해 효과적인 수질관리가 필수적이다. 원격탐사기술은 조류의 공간적인 분포를 해석하고 농도를 정량화하기위해 이용되고 있다. 현재까지 많은 분광알고리즘들이 개발되어 담수유역에 적용이 되고 있다. 수체마다 다른 분광특성 때문에 알고리즘내의 파라미터 및 분광밴드 조정이 필수적이다. 하지만 대부분의 연구에선 파라미터와 밴드의 변경에 따른 결과향상에만 초점이 맞춰지고 있어 분광알고리즘내의 파라미터와 분광밴드사이의 관계 이해 뿐만아니라 알고리즘 최종 산출물에 대한 영향에 관한 설명이 전무한 실정이다. 본 연구에선, 대한민국 백제보를 대상으로 현장모니터링 및 조류추출 실험을 진행하였고, 이를 기반으로 5가지 클로로필a 알고리즘과 2가지 피코시아닌 알고리즘을 구축하였다. 알고리즘내에서 변수들의 관계와 영향을 알아보기위해 민감도 분석을 실시하였다. 민감도 분석 조건을 기반으로 one-objective 최적화 및 multi-objective 최적화를 실시하여 백제보수계를 대표할 수 있는 최적 변수들을 모의하였다. 민감도 분석결과 후방산란계수에 영향을 미치는 파라미터와 조류 생체량에 영향을 미치는 파라미터가 다른 변수들 및 알고리즘 농도산정결과에 가장 민감한 것으로 나타났다. multi-objective 최적화 결과가 one-objective 결과 및 reference 결과보다 대부분 정확도가 향상되었고 흡광도 계수를 함께 고려할 수 있기 때문에 백제보 수계의 분광특성을 함께 고려하여 대표할 수 있는 장점을 가지는 것으로 나타났다. 따라서, 본 연구는 민감도 분석을 활용하여 분광알고리즘 내의 변수들의 이해를 도모하였고, 최적화 기법 중, multi-objective 최적화 기법이 백제보의 분광특성을 대변하는 최적변수를 제시할 수 있음과 동시에 보다 나은 정확성을 제고할 수 있음을 확인하였다.

  • PDF

Genetically Optimization of Fuzzy C-Means Clustering based Fuzzy Neural Networks (FCM 기반 퍼지 뉴럴 네트워크의 진화론적 최적화)

  • Choi, Jeoung-Nae;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2007.10a
    • /
    • pp.405-406
    • /
    • 2007
  • 본 논문에서는 FCM 기반 퍼지 뉴럴네트워크 구조를 제안하고 진화 알고리즘을 이용한 FCM 기반 퍼지 뉴럴네트워크의 구조와 파라미터의 최적화 방법을 제시한다. 클러스터링 알고리즘은 퍼지 뉴럴 네트워크에서 멤버쉽함수의 중심점과 반경 등을 결정하는 학습에 일반적으로 사용된다. 제안된 FCM 기반 뉴럴 네트워크에서 멤버쉽함수는 가우시안, 삼각형 타입등의 정해진 형태를 사용하지 않고 데이터들 사이의 거리에 관계된 계산을 수행하는 FCM에 의해 결정된다. 후반부는 상수형, 선형, 2차식 등의 다양한 다항식 구조로 표현될 수 있으며 다항식의 계수는 LSE를 이용하여 결정한다. FCM 기반 퍼지 뉴럴 네트워크는 퍼지규칙의 수, 입력변수의 선택, 후반부 다항식의 차수, FCM의 퍼지화 계수의 결정은 성능에 많은 차이가 있으며 이러한 구조와 파라미터의 최적화가 요구된다. 본 논문에서는 유전자 알고리즘을 이용하여 FCM 기반 퍼지뉴럴네트워크의 구조에 관련된 입력변수의 수, 퍼지규칙의 수 그리고 후반부 다항식의 차수와 파라미터에 관련된 퍼지화 계수를 최적화 한다. 제안된 방법은 비선형 시스템의 모델링에 적용하여 성능을 분석하였다.

  • PDF

Evolutionarily Optimized Design of Self-Organized Fuzzy Polynomial Neural Networks by Means of Dynamic Search Method of Genetic Algorithms (유전자 알고리즘의 동적 탐색 방법을 이용한 자기구성 퍼지 다항식 뉴럴 네트워크의 진화론적 최적화 설계)

  • Park Ho-Sung;Oh Sung-Kwun;Ahn Tae-Chon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.11a
    • /
    • pp.475-478
    • /
    • 2005
  • 본 논문에서는 자기구성 퍼지다항식 뉴럴 네트워크(SOFPNN)를 구성하고 있는 퍼지 다항식뉴론(FPM)의 구조와 파라미터를 유전자 알고리즘을 이용하여 최적화시킨 새로운 개념의 진화론적 최적 고급 자기구성 퍼지 다항식 뉴릴 네트워크를 소개한다. 기존의 자기구성 퍼지 다항식 뉴럴 네트워크에서 모델을 설계할 때에는 설계자의 주관적인 특징과 시행착오에 의해서 모델을 구축하였다. 이러한 설계자의 경험을 배제하고 객관적이고 효율적인 모델을 구축하기 위해서 본 논문에서는 FPH의 파라미터들을 최적화 알고리즘인 유전자 알고리즘을 이용하여 동조하였다. 즉, 모델을 구축하는데 기본이 되는 FPN의 각각의 파라미터들-입력변수의 수, 다항식 차수, 입력변수, 멤버쉽 함수의 수, 그리고 멤버쉽 함수의 정점-을 동조함으로써 기존의 모델에 비해서 구조적으로 그리고 파라미터적으로 최적화된 네트워크를 생성할 수 있다. 뿐만 아니라 주어진 데이터의 특성을 모델 구축에 반영하고자 멤버쉽 함수의 정점 역시 유전자 알고리즘으로 동조하였다. 실험적 예제를 통하여 제안된 모델의 성능을 확인한 결과 기존의 퍼지모델 및 신경망 모델에 비해서 아주 우수한 근사화 능력과 일반화 능력을 가짐을 알 수 있다.

  • PDF

Genetic Optimization of IG-based Fuzzy Model by Means of Improved Consecutive Tuning Method (개선된 연속적 동조 방법에 의한 정보 입자 퍼지 모델의 최적화)

  • Park, Geon-Jun;O, Seong-Gwon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.11a
    • /
    • pp.370-373
    • /
    • 2006
  • 본 논문에서는 복잡하고 비선형적인 시스템에 대하여 구체적이고 체계적인 방법에 의한 퍼지 모델을 설계하기 위해 유전자알고리즘을 이용하여 전반부 및 후반부의 구조와 파라미터 동정한다. 정보 입자 기반 퍼지 모델의 구조를 동정하기 위하여 유전자 알고리즘을 이용하여 입력 변수의 수, 선택될 입력 변수, 멤버쉽함수의 수, 그리고 후반부 형태를 결정하고, 파라미터를 동정하기 위하여 전반부 멤버쉽 파라미터를 동조하여 최적의 퍼지 모델을 설계한다. 또한 구조 동정 및 파라미터 동정에 있어서 개선된 연속적 동조 방법으로 접근하여 정보 입자 기반 퍼지 모델의 최적 동정을 도모한다. 마지막으로 제안된 퍼지 모델은 표준 모델로서 널리 사용되는 수치적인 예를 통하여 평가한다.

  • PDF

A Real-time Point Cloud Ground Segmentation Study for Outdoor Autonomous Robots (실외 자율주행 로봇을 위한 실시간 Point Cloud Ground Segmentation)

  • Ji-Won Son;Hyung-Pil Moon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2024.05a
    • /
    • pp.482-483
    • /
    • 2024
  • Real-time Point Cloud Ground Segmentation은 자율주행에서 판단 및 객체 탐지/추적 등 다양한 분야에 도움을 준다. 이에 따라, Real-time Point Cloud Ground Segmentation을 했으며, 센서로는 라이다, 알고리즘으로는 TRAVEL논문을 인용했다. 또한 Real-time Point Cloud Ground Segmentation뿐 만 아니라 이동가능지형 판단(Traversability)을 하였다. 그리고 최종적으로, 위와 같은 알고리즘들을 회사 로봇(Scout Mini Robot)에 접목시켰으며 그 과정에서 TRAVEL 알고리즘내에 내제된 파라미터 값들을 최적화시키는 과정이 필요하였다. 그래서 3가지의 방법을 통해 파라미터 값을 선정한 후, 결과값을 비교 분석하였다. 연구 결과, Rellis-3D와 베이지안 최적화를 사용한 베이지안 파라미터가 최적의 파라미터임을 확인할 수 있었다.