• Title/Summary/Keyword: 파라미터 최적화

Search Result 728, Processing Time 0.026 seconds

Structural Design of Radial Basis function Neural Network(RBFNN) Based on PSO (PSO 기반 RBFNN의 구조적 설계)

  • Seok, Jin-Wook;Kim, Young-Hoon;Oh, Sung-Kwun
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.381-383
    • /
    • 2009
  • 본 논문에서는 대표적인 시스템 모델링 도구중의 하나인 RBF 뉴럴 네트워크(Radial Basis Function Neural Network)를 설계하고 모델을 최적화하기 위하여 최적화 알고리즘인 PSO(Particle Swarm Optimization) 알고리즘을 이용하였다. 즉, 모델의 최적화에 주요한 영향을 미치는 모델의 파라미터들을 PSO 알고리즘을 이용하여 동정한다. 제안된 RBF 뉴럴 네트워크는 은닉층에서의 활성함수로서 일반적으로 많이 사용되어지는 가우시안 커널함수를 사용한다. 더 나아가 모델의 최적화를 위하여 각 커널함수의 중심값은 HCM 클러스터링에 기반을 두어 중심값을 결정하고, PSO 알고리즘을 통하여 가우시안 커널함수의 분포상수, 은닉층에서의 노드 수 그리고 다수의 입력을 가질 경우 입력의 종류를 동정한다. 제안한 모델의 성능을 평가하기 위해 Mackey-Glass 시계열 공정 데이터를 적용하였으며 제안된 모델의 근사화와 일반화 능력을 분석한다.

  • PDF

Training Optimization for Fringe Pattern Generation Network Based on Deep Learning (딥러닝 기반의 프린지 패턴 생성 네트워크 학습에 대한 최적화)

  • Park, Sun-Jong;Kim, Woosuk;Seo, Young-Ho
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.06a
    • /
    • pp.858-859
    • /
    • 2022
  • 본 논문에서는 프린지 패턴을 생성하는 딥러닝 기반의 WGAN-GP 네트워크의 최적화 방법을 제안한다. 기존의 복소 프린지 패턴 생성을 위한 GAN 모델은 생성의 정확도뿐만 아니라 학습의 안정성이 다소 부족하였다. 이에 따라 WGAN-GP 등의 업그레이드 된 방법을 사용하였지만, 네트워크 구조 및 파라미터에 따른 최적화가 필요하다. 보다 정확도 높은 정확도를 가진 프린지 패턴 생성을 위해 learning rate decay 사용하여 학습된 결과를 epoch 별 그래프로 최적화 전의 결과와 비교하고, 홀로그램과 복원 결과에 대한 PSNR 을 비교한다.

  • PDF

Equivalent Circuit Parameter Extraction of four-port Microstrip Interconnects using Optimization (4포트 마이크로스트립 인터커렉트 회로 파라미터 추출에 대한 연구)

  • Shim, Min-Kyu;HwangBo, Hoon;Kim, Jong-Min;Nah, Wan-Soo;Seol, Byung-Soo;Lee, Jong-Sung;Lee, Hyung-Suk
    • Proceedings of the KIEE Conference
    • /
    • 2006.10a
    • /
    • pp.139-140
    • /
    • 2006
  • 본 논문에서는 4포트 마이크로스트립 인터커넥트에 대한 새로운 등가모델을 제시하였다. 제시된 방법에서는 마이크로스트립 인터커넥트 중 선로의 방향이 변하는 부분에서 등가회로 파라미터인 커페시터 성분을 모델화하여 최적화 과정을 통해 값을 추출하였고, 시뮬레이션 결과와 측정치를 비교함으로써 등가회로모델의 유효성을 확인하였다.

  • PDF

Approximate Multi-Objective Optimization of A Wall-mounted Monitor Bracket Arm Considering Strength Design Conditions (강도조건을 고려한 벽걸이 모니터 브라켓 암의 다중목적 근사최적설계)

  • Doh, Jaehyeok;Lee, Jongsoo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.5
    • /
    • pp.535-541
    • /
    • 2015
  • In this study, an approximate multi-objective optimization of a wall-mounted monitor bracket arm was performed. The rotation angle of the bracket arm was determined considering the inplane degree of freedom. We then formulated an optimization problem on maximum stress and deflection. Analyses of mean and design parameters were conducted for sensitivity regarding performance with orthogonal array and response surface method (RSM). RSM models of objective and constraint functions were generated using central composite (CCD) and D-optimal design. The accuracy of approximate models was evaluated through $R^2$ value. The obtained optimal solutions by non-dominant sorting genetic algorithm (NSGA-II) were validated through the finite element analysis and we compared the obtained optimal solution by CCD and D-optimal design.

A Study of Ant Colony System Design for Multicast Routing (멀티캐스트 라우팅을 위한 Ant Colony System 설계에 대한 연구)

  • Lee, Sung-Geun;Han, Chi-Geun
    • The KIPS Transactions:PartA
    • /
    • v.10A no.4
    • /
    • pp.369-374
    • /
    • 2003
  • Ant Algorithm is used to find the solution of Combinatorial Optimization Problems. Real ants are capable of finding the shortest path from a food source to their nest without using visual informations. This behavior of real ants has inspired ant algorithm. There are various versions of Ant Algorithm. Ant Colony System (ACS) is introduced lately. ACS is applied to the Traveling Salesman Problem (TSP) for verifying the availability of ACS and evaluating the performance of ACS. ACS find a good solution for TSP When ACS is applied to different Combinatorial Optimization Problems, ACS uses the same parameters and strategies that were used for TSP. In this paper, ACS is applied to the Multicast Routing Problem. This Problem is to find the paths from a source to all destination nodes. This definition differs from that of TSP and differs from finding paths which are the shortest paths from source node to each destination nodes. We introduce parameters and strategies of ACS for Multicasting Routing Problem.

Development of forest carbon optimization program using simulated annealing heuristic algorithm (Simulated Annealing 휴리스틱 기법을 이용한 임분탄소 최적화 프로그램의 개발)

  • Jeon, Eo-Jin;Kim, Young-Hwan;Park, Ji-Hoon;Kim, Man-Pil
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.12
    • /
    • pp.197-205
    • /
    • 2013
  • In this study, we developed a program of optimizing stand-level carbon stock using a stand-level yield model and the Simulated Annealing (SA) heuristic method to derive a optimized forest treatment solution. The SA is one of the heuristic algorithms that can provide a desirable management solution when dealing with various management purposes. The SA heuristic algorithm applied 'thermal equilibrium test', a thresholds approach to solve the phenomenon that does not find an optimum solution and stays at a local optimum value during the process. We conducted a sensitivity test for the temperature reduction rate, the major parameter of the thermal equilibrium test, to analyze its influence on the objective function value and the total iteration of the optimization process. Using the developed program, three scenarios were compared: a common treatment in forestry (baseline), the optimized solution of maximizing the amount of harvest(alternative 1), and the optimized solution of maximizing the amount of carbon stocks(alternative 2). As the results, we found that the alternative 1 showed provide acceptable solutions for the objectives. From the sensitivity test, we found that the objective function value and the total iteration of the process can be significantly influenced by the temperature reduction rate. The developed program will be practically used for optimizing stand-level carbon stock and developing optimized treatment solutions.

Optimization of Information Granule-based Fuzzy Neural Network (정보 입자 기반 퍼지 뉴럴 네트워크의 최적화)

  • Park, Keon-Jun;Oh, Sung-Kwun;Kim, Hyun-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.2093-2094
    • /
    • 2006
  • 본 논문에서는 입출력 데이터의 특성을 이용하기 위하여 HCM 클러스터링에 의한 정보 입자를 이용한 퍼지 뉴럴 네트워크의 설계를 제안하고 최적화한다. 대상 시스템의 입출력 데이터를 취득하여 데이터들간의 거리를 중심으로 멤버쉽 함수를 정의하고 각 규칙에 속한 입출력 데이터를 추출하여 후반부 추론에 적용한다. 또한, 앞서 정의된 멤버쉽 파라미터는 유전자 알고리즘을 이용하여 최적으로 동정하여 퍼지 뉴럴 네트워크를 최적화한다. 제안된 퍼지 뉴럴 네트워크는 삼각형 멤버쉽 함수를 이용하며, 후반부 추론에는 간략, 선형, 변형된 2차식을 이용한다. 제안된 퍼지 뉴럴 네트워크는 표준 모델로서 널리 사용되는 수치적인 예를 통하여 평가한다.

  • PDF

Methodology for Developing a Predictive Model for Highway Traffic Information Using LSTM (LSTM을 활용한 고속도로 교통정보 예측 모델 개발 방법론)

  • Yoseph Lee;Hyoung-suk Jin;Yejin Kim;Sung-ho Park;Ilsoo Yun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.5
    • /
    • pp.1-18
    • /
    • 2023
  • With the recent developments in big data and deep learning, a variety of traffic information is collected widely and used for traffic operations. In particular, long short-term memory (LSTM) is used in the field of traffic information prediction with time series characteristics. Since trends, seasons, and cycles differ due to the nature of time series data input for an LSTM, a trial-and-error method based on characteristics of the data is essential for prediction models based on time series data in order to find hyperparameters. If a methodology is established to find suitable hyperparameters, it is possible to reduce the time spent in constructing high-accuracy models. Therefore, in this study, a traffic information prediction model is developed based on highway vehicle detection system (VDS) data and LSTM, and an impact assessment is conducted through changes in the LSTM evaluation indicators for each hyperparameter. In addition, a methodology for finding hyperparameters suitable for predicting highway traffic information in the transportation field is presented.

A Comparative Study on Optimization Procedures to Robust Design (로버스트설계에서 최적화방안에 대한 비교 연구)

  • Kwon, Yong-Man;Mun, In-Suk
    • Journal of the Korean Data and Information Science Society
    • /
    • v.11 no.1
    • /
    • pp.65-72
    • /
    • 2000
  • Robust design is an approach to reducing performance variation of quality characteristic values in quality engineering. Taguchi parameter design has a great deal of advantages but it also has some disadvantages. The various research efforts aimed at developing alternative methods. In the Taguchi parameter design, the product-array approach using orthogonal arrays is mainly used. However, it often requires an excessive number of experiments. An alternative approach, which is called the combined-array approach, was suggested by Welch et. al. (1990) and studied by others. In this paper we make a comparative study on optimization procedures to robust design in the two different experimental design(product array, combined array) approaches the Mough the Monte Carlo simulation.

  • PDF

Parameter Optimization of SOVA for the 3GPP complied Turbo code (3GPP 규격의 터보 복호기구현을 위한 SOVA 파라미터 최적화)

  • 김주민;고태환;정덕진
    • Proceedings of the IEEK Conference
    • /
    • 2000.11a
    • /
    • pp.157-160
    • /
    • 2000
  • In order to design a low complexity and high performance SOVA decoder for Turbo Codes, we need to analyze the decoding performance with respect to several important design parameters and find out optimal values for them. Thus, we use a scaling factor of soft output and a update depth as the parameters and analyze their effect on the BER performance of the SOVA decoder. finally, we shows the optimal values of them for maximum decoding performance of SOVA decoder for 3GPP complied Turbo codes.

  • PDF