신경망은 선형 시스템 뿐 만 아니라 비선형 시스템에 있어서도 탁월한 모델링 및 예측 성능을 갖고 있다. 하지만 좋은 성능을 갖는 신경망을 구현하기 위해서는 최적화 해야할 파라미터들이 있다. 은닉층의 뉴런의 수, 학습율, 모멘텀, 학습오차 등이 그것인데 이러한 파라미터들은 경험에 의해서, 또는 문헌들에서 제시하는 값들을 선택하여 사용하는 것이 일반적인 경향이다. 하지만 신경망의 전체적인 성능은 이러한 파라미터들의 값에 의해서 결정되기 때문에 이 값들의 선택은 보다 체계적인 방법을 사용하여 구하여야 한다. 본 논문은 유전 알고리즘을 이용하여 이러한 신경망 파라미터들의 최적 값을 찾는데 목적이 있다. 유전 알고리즘을 이용하여 찾은 파라미터들을 사용하여 학습된 신경망의 학습오차와 예측오차들을 심플렉스 알고리즘을 이용하여 찾은 파라미터들을 사용하여 학습된 신경망의 오차들과 비교하여 본 결과 유전 알고리즘을 이용하여 찾을 파라미터들을 이용했을 때의 신경망의 성능이 더욱 우수함을 알 수 있다.
다양한 디지털 기술의 발전으로 인하여 방송형태의 이동 멀티미디어 서비스가 다국적으로 제안되고, 국내에서는 이동 멀티미디어 방송 (DMB: Digital Multimedia Broadcasting)을 통하여 야외나 이동시에도 시청이 가능한 방송서비스가 활발해지고 있다. 휴대 및 이동수신 방송 환경에서 비디온 오디오 및 데이터를 포함한 멀티미디어 방송 서비스를 효율적으로 제공하기 위해서는 다양한 장소에서 수신 영상에 대한 품질 확보가 필수적이다. 본 논문에서는 현재 이동 멀티미디어 방송이 비디오 압축방식으로 채택하고 있는 H.264/AVC 압축 파라미터의 성능 연구에 대하여 기술한다. 현재 국내의 위성/지상파 DMB의 경우 비디오의 압축 방법으로 H.264/AVC baseline 1.3의 표준규격을 사용한다. 이러한 비디오 코덱(codec) 이용하여 비디오 영상을 압축할 경우 관련 파라미터(parameter) 조절이 가능한데, 비디오를 압축할 경우 관련 파라미터들을 어떻게 정하느냐에 따라 서로 다른 수신환경에서 압축 효율 및 재생된 비디오의 화질에 많은 영향을 미친다. 따라서 수신 환경에 가장 적합한 비디오 화질을 얻기 위해서는 관련 파라미터 설정이 매우 중요하다. 본 논문에서는 다양한 압축 파라미터들 중 화질에 많은 영향을 미치는 항목을 선정하여, 해당 파라미터의 변화가 재생된 비디오 화질에 미치는 영향을 객관적 평가척도인 PSNR, Bit-rate, 수행시간 등을 이용하여 분석하였다. 또한, 실험 결과를 바탕으로 이동 멀티미디어 방송 환경에서의 H.264 인코더의 적정 압축 파라미터 및 인코더의 성능 개선 방안을 제안한다.
본 논문에서는 음성/음악 통합 압축 기술(USAC)에 적용된 공간 오디오 부호화 기법인 MPEG 서라운드에서 채널 간 위상차(IPD) 파라미터를 효과적으로 생략하는 기법에 대해 다룬다. 기존의 방법에서는 파라미터 밴드의 IPD 파라미터가 모두 작은 경우에도 전체를 처리하여 전송한다. 이러한 경우 생략을 통해 비트 효율을 향상시킬 수 있다. IPD 파라미터의 심리음향적 민감도를 고려하여 청취 환경에서 인지하지 못하는 문턱 값을 추정하고, 문턱 값 아래의 위상차를 발생시키는 IPD 파라미터는 0으로 설정하고 전송하지 않는다. 제안하는 채널 간 위상차 파라미터 생략 기법을 적용하면 기존에 비해 38% 정도의 위상 파라미터 절감 효과를 얻을 수 있고, MUSHRA 청취 실험을 통해 복호화된 오디오의 음질 하락이 없음을 보인다.
좌심실의 파라미터는 심장의 기능을 분석하기 위해 측정되는 정량적인 표현으로, 특히 지역적 파라미터인 두께와 두께의 변화는 심판 기능을 분석하기에 적합한 파라미터이다. 본 연구에서는 이러한 좌심실의 지역적 파라미터를 측정하고, 이를 위해 사용되는 삼자원적 방법을 개선하여 구현함으로써 기존의 폭정 방법의 제약을 극복하고자 하였다. 또한, 측정 결과를 가시화하여 직관적인 분석이 가능하도록 하고, 이를 시스템에 구축하여 임상에서 직접적으로 활용할 수 있도록 하였다.
객체지향 분석-합성 부호화는 일련의 영상들을 여러 개의 동 객체로 분할한 후 각 객체의 움직임을 추정하고 보상한다. 그것은 각 객체에 있는 움직임 정보를 추정하기 위해 변환 파라미터 기법을 적용하는데 이때 변환 파라미터 기법은 그레디언트 연산자를 사용하기 때문에 매우 복잡한 계산이 요구된다. 본 논문의 목적은 객체지향 분석-합성 부호화에서 계층적 구조를 사용한 효율적인 변환파라미터 기법을 개발하는 것이다. 이러한 목표를 달성하기 위해 본 논문은 계층적 구조를 사용한 하이브리드 변환파라미터 추정 방법과 적응형 변환 파라미터 방법의 두 가지 알고리듬을 제안한다. 전자는 파라미터 검증 방법을 사용하는데 원 영상을 1/4로 축소한 저해상도 영상에서 파라미터 검증 처리 방법에 의해 6-파라미터 또는 8-파라미터로 추정한다. 후자는 동일한 계층적 방법을 적용한 다음 변환 파라미터를 적응적으로 추정하기 위해 temporal co-occurrence 행렬에 기반 한 움직임 량을 측정하는 움직임 판단기준을 사용한다. 이러한 방법은 고속이며, 병렬처리 기법을 사용할 경우 쉽게 하드웨어로 구현할 수 있는 이점이 있다. 이론 분석 및 모의시험 결과 제안한 방법이 기존 방법에 비해 약 1/4 정도로 월등한 계산량 감축을 얻을 수 있었으며, 아울러 제안한 방법들에 의해 복원된 신호대 잡음비는 6-파라미터와 8-파라미터 추정 방법에 의해 복원된 결과들 사이에 있음을 보여 준다.
본 논문에서는 콤팩트한 동영상 표현과 객체기반의 generic한 동영상압축을 위한 파라미터릭 움직임 모델의 파라미터 추정과 세그맨테이션 기법에 관해서 기술한다. 동영상의 optical flow와 같은 국소적 움직임 정보와 파라미터 움직임 모델의 특징을 이용해서 영상의 콤팩트한 구조적 표현을 추출하기 위해, 본 논문에서는 2 스템의 과정 즉, 초기영역을 추출하는 과정과, 파라미터릭 움직임 파라미터의 추정과 세그맨테이션을 동시에 수행하는 과정으로 구성된 새로운 알고리즘을 제안한다. 혼합 모델이 ML 추정에 의거한 확률적 클러스터링에 의해 움직임 물체의 움직임과 형상을 반영한 초기영역을 추출하고, 파라미터릭 움직임 모델을 사용해서 각각의 초기 영역마다 움직임 파라미터를 추정하고 세그맨테이션을 수행한다. 또한, CIF 표준 동영상을 사용한 모의 실험을 통해 본 제안 알고리즘의 유효성을 평가한다.
CMOS 트랜지스터의 등가회로모델 파라미터 $C_{gs}$ 의 예측방법이 CMOS 트랜지스의 반전층내의 유동전하량 계산과 전하유도 특성에 의해 제안되었다. 이 $C_{gs}$ 파라미터는 MOS 트랜지스터의 RF대역의 차단주파수를 결정하고 또한 입력과 출력을 커플링 시키는 중요한 파라미터이다. 이 제안된 방법은 등가회로 모델에서 파라미터 값을 예측하고 파라미터 값을 추출하는 소프트웨어 개발에 기여할 것이다.
본 논문에서는 특징 파라미터의 분산과 인식성능에 대한 기여도를 고려하여 각 특징 파라미터를 가중시키는 방법을 제안하였다. 각 특징 파라미터의 인식률에 비례하게 전체 기여도를 설정하고, 각 특징 파라미터의 분산에 따라 가중요인을 설정하였다. 전체 기여도와 분산에 따른 가중요인을 사용하여 각 특징 파라미터의 상태별 가중치를 설정하였다. 제안한 방법의 유효성을 살펴보기 위해 유사음소 단위의 HMM 음성인식시스템을 사용하여 인식실험을 하였다. 인식실험에서 제안한 방법으로 가중치를 설정하였을 경우에 인식률이 7.7% 향상됨을 볼 수 있었다.
본 논문에서는 변조 함수법을 이용하여 비선형 연속시스템의 퍼지모델 파라미터 인식을 위한 새로운 알고리즘을 제시하였다. 동력학 미분방정식은 미분항을 가지고 있기 때문에 입출력 데이터를 이용하여 퍼지모델 파라미터를 인식하는 경우 외란의 영향을 무시할 수 없으므로 퍼지모델 파라미터 인식이 어렵다. 그러나 변조 함수법을 이용하면 미분항을 소거할 수 있어 미분항이 없는 연립방정식으로부터 쉽게 퍼지모델 파라미터 인식이 가능하다 몇 개의 시뮬레이션을 통해 제안한 변조 함수법을 이용한 퍼지모델 파라미터 인식의 정확성과 유효성을 확인할 수 있었다.
한국음향학회 1998년도 제15회 음성통신 및 신호처리 워크샵(KSCSP 98 15권1호)
/
pp.302-305
/
1998
음소의 확률적 분포를 이용하는 음소 HMM 모델을 결정하기 위한 여러 가지 거리 측정방법에 대한 연구이다. 음소 HMM 모델 결정을 위해서 LPC 계수를 이용하고, 거리 측정자를 LPC 계수, LPC 스첵트럼, LPC 켑스트럼 등의 파라미터를 이용하고, 또한 양자화 과정은 k-means 와 LBG 알고리즘을 혼합한 하이브리드 알고리듬을 사용하였다. LPC 코드북을 구성하기 위해 세 가지 파라미터를 유클리디안 거리로 거리측정에 이용하였다. 이렇게 양자화한 파라미터의 평균과 분산을 구하고, 양자화한 파라미터 코드북의 확률갑승ㄹ 비교해 한국어 음소 HMM 모델 결정을 위한 거리 측정 파라미터를 비교하였으며, 그 결과 LPC 계수를 주파수 영역으로 변환하여 유클리디안 거리를 이용한 코드북의 분산이 작으므로 상대적으로 높은 확률을 가짐을 보았다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.