• Title/Summary/Keyword: 파라메트릭 배열 통신

Search Result 5, Processing Time 0.02 seconds

Performance of Parametric Array Communication System in Underwater AWGN Channel (수중 AWGN 채널에서의 파라메트릭 배열 통신 성능)

  • Lee, Jaeil;Lee, Chong Hyun;Bae, Jinho;Paeng, Dong-Guk;Kim, Won-Ho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.4
    • /
    • pp.294-300
    • /
    • 2013
  • In this paper, we present performance analysis results of parametric array communication system in terms of theoretical BER and channel capacity of MIMO in underwater AWGN channel by using simplified SNR of difference frequency. The SNR of the difference frequency is calculated by using transmission loss, noise level, and source level of difference frequency in which nonlinear effect is considered. By assuming primary frequencies as 210 kHz and 190 kHz, difference frequency as 20 kHz, transducer diameter as 0.1 m, and noise level as 50 dB and the requested BER as $10^{-4}$, we obtain parametric array communication range gains over the communication system using primary frequency of 59.11 km in fresh water and 5 km in sea water, respectively. Also we obtain range gains of 38.84 km and 46.38 km in fresh water, and 3.88 km and 4.38 km in sea water when we use SISO and $2{\times}2$ MIMO parametric array communications for the channel capacity of 10 bps/Hz.

Design and Development Research of a Parametric Array Transducer for High Directional Underwater Communication (고지향 수중 통신을 위한 파라메트릭 어레이 트랜스듀서의 설계 및 개발 연구)

  • Hwang, Yonghwan;Je, Yub;Moon, Wonkyu
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.2
    • /
    • pp.117-129
    • /
    • 2015
  • A parametric array is a nonlinear phenomenon that generates a narrow beam of low-frequency sound using the nonlinearity of the medium. The low-frequency sound so generated has a low sound pressure compared with that of sound generated directly. Consequently, a transducer that can generate a primary wave with high directivity and level is required. This study designed, fabricated, and evaluated a multi-resonance transducer as a parametric array source. The designs of the unit transducers and array transducer were based on an analysis model. The design process was repeated to fabricate the optimum transducer. The fabricated transducer array can generate a 189 dB, 190 dB primary wave level at 6.3 m and a 134 dB difference frequency wave using the parametric array phenomenon. The difference frequency wave has a frequency of 15 kHz and high directivity with an $8^{\circ}$ half power beam width in a $12{\times}18{\times}10m$ water tank.

Audio Signal Processing using Parametric Array with KZK Model (KZK 모델을 이용한 파라메트릭 어레이 음향 신호 처리)

  • Lee, Chong-Hyun;Samuel, Mano;Lee, Jea-Il;Kim, Won-Ho;Bae, Jin-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.5
    • /
    • pp.139-146
    • /
    • 2009
  • Parametric array for audio applications is analyzed by numerical modeling and analytical approximation. The nonlinear wave equations are used to provide design guidelines for the audio parametric array. A time domain finite difference code that accurately solves the KZK (Khokhlov-Zabolotskaya-Kuznetsov) nonlinear parabolic wave equation is used to predict the response of the parametric array. The time domain code relates the source size and the carrier frequency to the audible signal response including the output level and beamwidth to considering the implementation issues for audio applications of the parametric array, the emphasis is given to the frequency response and distortion. We use the time domain code to find out the optimal parameters that will help produce the parametric array with highest achievable output in terms of the average power within the demodulated signal. Parameters such as primary input frequency, audio source radius and the modulation method are given utmost importance. The output effect of those parameters are demonstrated through the numerical simulation.

  • PDF

Parametric Array Sonar System Based on Maximum Likelihood Detection (최대우도 검파에 기반한 파라메트릭 어레이 소나 시스템)

  • Han, Jeong-Hee;Lee, Chong-Hyun;Paeng, Dong-Guk;Bae, Jin-Ho;Kim, Won-Ho
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.1
    • /
    • pp.25-31
    • /
    • 2011
  • In the underwater communications, transmitted acoustic signal is corrupted by interference from multipath. A parametric array transducer is capable of radiating a narrow beam with very low sidelobe levels. In certain cases, the parametric array transducer can help the multipath problem. To improve the performance of the underwater communications, the statistical signal processing methods will be required. In the paper, the communication system using a parametric array transducer was demonstrated. To detect the received signal of the communication system based on the on-off keying, the maximum likelihood method using averaged signal for a particular window size is used. The communication system has GUI using LebVIEW which allows the user to change the parameter. The GUI can also be easily modified based on the characteristics of a parametric array transducer. The implemented system can effectively evaluate the performance of the parametric array transducer.

Analysis of Highly Directional Sonar Communication System (고지향 소나 시스템 통신 성능분석)

  • Lee, Jaeil;Lee, Chong Hyun;Lee, Seung Wook;Shin, Jungchae;Jung, Jin Woo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.12
    • /
    • pp.3-9
    • /
    • 2012
  • In this paper, we present novel analysis results of sonar communication using parametric array. We consider transducer diameter, primary frequency, difference frequency and acoustic power as analysis parameters of communication performance. We calculate theoretical BER(Bit Error Rate) and channel capacity of MIMO(Multi Input and Multi Output) communication system. By considering practical parameters, we obtain optimum difference frequency generation condition. The obtained primary frequency is 560 kHz, difference frequency 45kHz and acoustic power is 28.05Watt. For BER of $10^{-4}$, the range gain of parametric array communication is 3.35km compared to primary frequency communication. For channel capacity of 10bps/Hz, the SISO and $2{\times}2$ MIMO communication range of parametric array communication are 3.8km and 3.98km respectively, while primary frequency communication range is 0.83km.