• Title/Summary/Keyword: 파단 전 누설

Search Result 74, Processing Time 0.022 seconds

Application of Enhanced Reference Stress Method to Nuclear Piping LBB Analysis under Combined Tension and Bending (복합하중이 작용하는 원자력 배관의 파단전누설 해석을 위한 개선된 참조응력법의 수치해석적 검증)

  • Huh, Nam-Su;Kim, Yun-Jae;Kim, Young-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.6
    • /
    • pp.67-73
    • /
    • 2001
  • Three dimensional, elastic-plastic finite element(FE) analyses for circumferential through-wall cracked pipes under combined tension and bending are performed using actual tensile data of stainless steel, for two purposes. The first one is to validate the recently-proposed enhanced reference stress (ERS) method to estimate the J-integral and COD for circumferential through-wall cracked pipes under combined tension and bending. The second one is to compare those results with the GE/EPRI estimations. The FE results of the J-integral and the COD, resulting from six cases of proportional and non-proportional combined tension and bending, compare very well with those estimated from the proposed method. Excellent agreements of the proposed method with the detailed FE results provide sufficient confidence in the use of the proposed method to the Leak-Before-Break(LBB) analysis of through-wall cracked pipes under combined tension and bending.

  • PDF

Application of enhanced Reference Stress Method to Nuclear Piping LBB Analysis : Finite Element Validation (원자력 배관의 파단전누설 해석을 위한 개선된 참조응력법의 수치해석적 검증)

  • Heo, Nam-Su;Kim, Yun-Jae;Kim, Yeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.4
    • /
    • pp.741-747
    • /
    • 2001
  • Three-dimensional, elastic-plastic finite element analyses for circumferential through-wall cracked pipes are performed using actual tensile data of stainless steels, for two purposes. The first one is to validate the recently-proposed enhanced reference stress (ERS) method to estimate the J-integral and COD for circumferential through-wall cracked pipes. The second one is to compare those results with the GE/EPRI estimations. It is found that the J-integral and COD estimations according to the GE/EPRI method can be very sensitive to how the stress-strain data are fitted using the Ramberg-Osgood relation. Moreover, no tendency can be found regarding the most appropriate fitting range for the Ramberg-Osgood fit. On the contrary, the J-integral and COD estimations based on the ERS method give more accurate results than the GE/EPRI estimation. The present results provide confidence in applying the proposed method to the Leak-Before-Break(LBB) analysis.

Development of Elastic-Plastic Fracture Mechanics Evaluation Program for Leak-Before-Break Analysis of Nuclear Piping (원전 배관 파단전누설 평가를 위한 탄소성 파괴역학 평가 프로그램 개발)

  • Park, Jun-Geun;Huh, Nam-Su;Kim, Ye-Ji;Lee, Sang-Min
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.16 no.2
    • /
    • pp.35-46
    • /
    • 2020
  • In this paper, a fracture mechanics evaluation system which can be used to assess the leak-before-break (LBB) of nuclear piping is developed. Existing solutions for calculating the fracture mechanics parameters (J-integral and crack opening displacement) required for LBB evaluation were firstly presented. Then a module for calculating J-integral and COD was developed, with an additional module for predicting the critical load based on the crack driving force diagram to finally develop a fracture mechanics evaluation system. To confirm the validity of the proposed evaluation system, finite element (FE) analysis was performed, and the FE J-integral and COD results were compared with prediction results using the J-integral and COD estimations program. Furthermore, the critical load assessment module was verified by comparing the actual pipe test results (Battelle test data) with prediction results using the proposed program.

Leak Before Break Evaluation of Surge Line by Considering CPE under Beyond Design Basis Earthquake (설계초과지진시 CPE를 고려한 밀림관 파단전누설 평가)

  • Seung Hyun Kim;Youn Jung Kim;Han-geol Lee;Sun Yeh Kang
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.18 no.1
    • /
    • pp.19-25
    • /
    • 2022
  • Nuclear Power Plants (NPP) should be designed to have sufficient safety margins and to ensure seismic safety against earthquake that may occur during the plant life time. After the 9.12 Gyeongju earthquake accident, the structural integrity of nuclear power plants due to the beyond design basis earthquake is one of key safety issues. Accordingly, it is necessary to conduct structural integrity evaluations for domestic NPPs under beyond design basis earthquake. In this study, the Level 3 LBB (Leak Before Break) evaluation was performed by considering the beyond design basis earthquake for the surge line of a OPR1000 plant of which design basis earthquake was set to be 0.2g. The beyond design basis earthquake corresponding to peak ground acceleration 0.4g at the maximum stress point of the surge line was considered. It was confirmed that the moment behaviors of the hot leg and pressurized surge nozzle were lower than the maximum allowable loading in moment-rotation curve. It was also confirmed that the LBB margin could be secured by comparing the LBB margin through the Level 2 method. It was judged that the margin was secured by reducing the load generated through the compliance of the pipe.

Prediction of Penetration and Break Fatigue Life of Surface Crack (표면크랙의 관통 및 파단 피로수명 예측)

  • 윤한용
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.8
    • /
    • pp.1446-1450
    • /
    • 1992
  • A method of prediction for the fatigue life of surface crack, that is, initial cracks grow and penetrate through the thickness, was presented in the previous study of the authors. Effects of parameters such as the initial crack depth, material factors, etc., for the life were also discussed. However, in the case of adapting the concept of LBB(Leak Before Break), the break fatigue life after the penetration of the thickness must be taken into account. Hence, a method to predict the break fatigue life is presented in this paper. Effects of the parameters for the break fatigue life are discussed and compared with the penetration fatigue life.

Leak-Before-Break Assessment Margin Analysis of Improved SA508-Gr.1a Pipe Material (개선된 SA508-Gr.1a 배관재의 파단전누설평가 여유도 분석)

  • Kim, Maan-Won;Lee, Yo-Seob;Shin, In-Whan;Yang, Jun-Seog;Kim, Hong-Deok
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.16 no.1
    • /
    • pp.42-48
    • /
    • 2020
  • The effect of improving the tensile and J-R fracture toughness properties of SA508 Gr.1a on the LBB margin for the main steam pipe is investigated. The material properties and microstructure images of the existing main steam piping material SA106 Gr.C used in domestic nuclear power plants and the newly selected material SA508 Gr.1a were compared. For each material, LBB margins were calculated and compared through finite element analysis and crack instability evaluation. The LBB margin of the improved SA508 Gr.1a is found to be greatly improved compared to that of the existing SA106 Gr.C and SA508 Gr.1a. This is because of the increased material's strength and J-R fracture toughness compared to the previous materials. In order to analyze the effect of physical property change on the LBB margin, the sensitivity of each LBB margin according to the variation of tensile strength and J-R fracture toughness was analyzed. The effect of the change in tensile strength was found to be greater than that of the change in fracture toughness. Therefore, an increase in strength significantly influenced the improvement of the LBB margin of the improved SA508 Gr.1a.

Evaluation of Leak Rate Through a Crack with Linearly-Varying Sectional Area (선형적으로 변하는 단면적을 가진 균열에서의 누설률 평가)

  • Park, Jai Hak
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.9
    • /
    • pp.821-826
    • /
    • 2016
  • The leak before break (LBB) concept is used in pipe line design for nuclear power plants. For application of the LBB concept, leak rates through cracks should be evaluated accurately. Usually leak late analyses are performed for through-thickness cracks with constant cross-sectional area. However, the cross-sectional area at the inner pipe surface of a crack can be different from that at the outer surface. In this paper, leak rate analyses are performed for the cracks with linearly-varying cross-sectional areas. The effect of varying the cross-sectional area on leak rates was examined. Leak rates were also evaluated for cracks in bi-material pipes. Finally, the effects of crack surface morphology parameters on leak rates were examined.

Crack Opening Displacement Estimation for Engineering Leak-Before-Break Analyses of Pressurized Nuclear Piping (원자력 배관의 공학적 파단전누설 해석을 위한 균열열림변위 계산)

  • Huh Nam-Su;Kim Yun-Jae;Chang Yoon-Suk;Yang Jun-Seok;Choi Jae-Boons
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.10
    • /
    • pp.1612-1620
    • /
    • 2004
  • This study presents methods to estimate elastic-plastic crack opening displacement (COD) fur circumferential through-wall cracked pipes for the Leak-Before-Break (LBB) analysis of pressurized piping. Proposed methods are based not only on the GE/EPRI approach but also on the reference stress approach. For each approach, two different estimation schemes are given, one for the case when full stress-strain data are available and the other fur the case when only yield and ultimate tensile strengths are available. For the GE/EPRI approach a robust way of determining the Ramberg-Osgood (R-O) parameters is proposed, not only fur the case when detailed information on full stress-strain data is available but also for the case when only yield and ultimate tensile strengths are available. The COD estimates according to the GE/EPRI approach, using the R-O parameters determined from the proposed R-O fitting procedures, generally compare well with the published pipe test data. For the reference stress approach, the COD estimates according to the method based on both full stress-strain data and limited tensile properties are in good agreement with pipe test data. In conclusion, experimental validation given in the present study provides sufficient confidence in the use of the proposed method to practical LBB analyses even though when information on material's tensile properties is limited.

The Effect of Tributary Pipe Breaks on the Core Support Barrel Shell Responses (분기관파단이 노심지지배럴의 쉘응답에 미치는 영향)

  • Jhung, Myung-Jo;Hwan, Won-Gul
    • Nuclear Engineering and Technology
    • /
    • v.25 no.2
    • /
    • pp.204-214
    • /
    • 1993
  • Work on fracture mechanics has provided a technical basis for elimination of main coolant loop double ended guillotine breaks from the structural design basis of reactor coolant system. Without main coolant loop pipe breaks, the tributary pipe breaks must be considered as design bases until further fracture mechanics work could eliminate some of these breaks from design consideration. This paper determines the core support barrel shell responses for the 3 inch pressurizer spray line nozzle break which is expected to be the only inlet break remaining in the primary side after leak-before-break evaluation is extended to smaller size pipes in the near future. The responses are compared with those due to 14 inch safety injection nozzle break and main coolant loop pipe break. The results show that, when the leak-before-break concept is applied to the primary side piping systems with a diameter of 10 inches or over, the core support barrel shell responses due to pipe breaks in the primary side are negligible for the faulted condition design.

  • PDF