• Title/Summary/Keyword: 파괴 인성.

Search Result 780, Processing Time 0.031 seconds

Effect of Hybrid Fibers on the Engineering Properties of HPFRCC (섬유 조합변화가 HPFRCC의 공학적 특성에 미치는 영향)

  • Han, Dongyeop;Han, Min Gheol;Kang, Byeong Hoe;Park, Yong Jun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.6
    • /
    • pp.639-645
    • /
    • 2014
  • For the construction materials, concrete, as the most widely used material, is focused on its improvement of performance. Although concrete has many advantages of easiness of handling, economical benefits, and high compressive strength, low tensile strength, brittleness and drying shrinkage are reported as the drawbacks of concrete. Hence, to solve these drawbacks of concrete, many research has conducted especially using fiber-reinforced concrete technology. Especially, HPFRCC which has high volume of fiber reinforcement was suggested as a solution of these drawbacks of normal concrete with increased ductility while it has the possibility of workability loss with fiber clumping which can cause low performance of concrete. Therefore, in this paper, optimized fiber combination with either or both metal and organic fibers is suggested to provide better performance of HPFRCC in tensile strength and ductility. As the results of experiment, better workability was achieved with 1 % of single fiber rather than multiple fibers combinations, espeically, short steel fiber showed the best workability result. Furthermore, in the case of organic fibers which showed higher air content than steel fibers, higher compressive strength was achieved while lower tensile and flexural strength were shown.

Tribological Properties of Pressureless-sinteed Silicon Carbide (상압소결 탄화규소 소결체의 마찰마모특성)

  • Baik, Yong-Hyuck;Choi, Woong;Seo, Young-Hean;Park, Yong-Kap
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.7
    • /
    • pp.721-725
    • /
    • 1998
  • In this study solid-phase sintered silicon caribide samples composed of SiC powder having boron and car-bon black as additives were prepared by pressureless sintering at $1950^{\circ}C$. The bending strength the frac-ture toughness and the specific werar rate of the samples were examined and the micro structures of the broken and the worn surface were observed by SEM to understand the relationship between the tri-bological charcteristics and the micro structure. Additionally the relationship between the micro struc-tures and the tribological characteristics of the samples for the frictional opponents SiC and $Al_{2}O_{3}$ pins were investigated Conclusions are as follows ; 1. The specific were rate of the samples for the SiC pin was larger than that for the $Al_{2}O_{3}$ pin. HOwever the specific wear rate for the $Al_{2}O_{3}$ pin was increased about 6,45 times as that for the SiC pin under the load increasing. 2. The specific wear rate of the SiC pin was larger than that of the $Al_{2}O_{3}$ pin. owever the specific wear rate of the $Al_{2}O_{3}$ pin was increased about 4 times as that of the SiC pin under the load increasing 3. The micro stucture of the worn surface showed a flat face without cracks in the case that the frictional opponents has the low friction coefficient but in the case of without cracks in the case that the frictional opponents has the low friction coefficient but in the case of the high friction coefficient the micro structure of the worn surface showed an uneven face having spread-ed cracks. 4. The tribological characteristics of thesolid-phase sintered SiC samples was similar to that of li-quid-phase sintered ones when the pin having the high friction coefficient was used.

  • PDF

Interfacial Pullout Characteristics of Recycled PET Fiber With Hydrophilic Chemical Treatments in Cement Based Composites (화학적 친수성 처리율에 따른 재생 PET 섬유와 시멘트 복합재료와의 계면 인발 특성)

  • Won, Jong-Pil;Park, Chan-Gi;Kim, Yoon-Jeong;Park, Kyung-Hoon
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.3
    • /
    • pp.333-339
    • /
    • 2007
  • The purpose of this study was to enhance bond performance between recycled PET (polyethylene telephthalat) fiber and cement composites through hydrophilic treatment using maleic anhydride grafted polypropylene(mPP). The mPP with various concentration of 0%, 5%, 10%, 15% and 20% to determine effect on bond behavior of recycled PET fiber were applied as experimental variables. Dog bone shaped specimens according to JCI SF-8 was applied to evaluate the bond strength and pullout energy. The results showed increased bond strength and pullout energy as concentration of mPP. Concentration of 15% mPP showed the most effective results while 20% showed reduced performance results. Because 15% mPP ensures perfect coating while 20% makes thick coating area that resulted in crack propagation and consequent separation of PET fiber and coated area during pullout load occurred. Enhancement mechanism of bond performance of recycled PET fiber and cement composites with each concentration of mPP could be conformed through investigation of microstructure of fiber surface.

A Study on the Alumina Ceramic Composite Dispersed With the Zirconia (지르코니아-알루미나 세라믹 복합재료에 관한 연구)

  • Park, Jae-Sung;Lee, Yeong-Sin
    • 전자공학회논문지 IE
    • /
    • v.49 no.2
    • /
    • pp.1-8
    • /
    • 2012
  • The effects of the addition of either monoclinic $ZrO_2(pure)$ or tetragonal $ZrO_2$ containing 5.35wt% $Y_2O_3(Y-TZP)$ on the mechanical properties and thermal shock resistance of $Al_2O_3$ ceramics were investigated. The addition of $ZrO_2$(m) and Y-TZP increased sintered density of $Al_2O_3$. The Vickers hardness also increased as the volume fraction of Y-TZP increased going through a maximum at 20wt%. The hardness of the specimens was found to be dependent on the sintered density. The higher volume fraction of either $ZrO_2(m)$ or Y-TZP resulted in the higher fracture toughness of the composite was. This result may be taken as evidence that toughening of $Al_2O_3$ can be achieved by not only the transformation toughening but microcrack toughening of $ZrO_2$. The thermal shock property for $Al_2O_3-ZrO_2$ composites was improved by increasing the volume fraction of monoclinic $ZrO_2(pure)$. The grain size increased as the volume fraction of $ZrO_2$ did.

Effect of Conditioning Methods on the Shear Bond Strength of Veneering composite on Zirconia Ceramic (Y-TZP ceramic의 표면처리에 따른 전장용 레진의 전단결합강도)

  • Nam, Hyun-Seok;Song, Kwang-Yeob;Ahn, Seung-Geun;Park, Ju-Mi
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.26 no.3
    • /
    • pp.253-264
    • /
    • 2010
  • The purpose of this study is to know whether Yttrium-stabilized-tetragonal -zirconia-polycrystal(Y-TZP ceramic) gets enough shear bond strength for clinical uses by applying veneering composite resin through surface treatment on it and finally to compare it with the case of applying veneering porcelain. LavaTM zirconia frameworks(3M ESPE, Seefeld, Germany) were prepared. Group P was manufactured with LavaTM Ceram(3M ESPE, Seefeld, Germany) in cylindrical shape which has 4mm diameter, 5mm height. Group ZSR disposed sandblasting and applied silane, bonding agent and after that indirect composite resin was applied. Group ZRR got tribochemical coating by RocatecTM system(3M ESPE. Seefeld, Germany) and treated silane. Finally Group ZPR took the same treatment and applied LavaTM Ceram in the size of 0.3-0.5mm height. After burning out, sandblasting, HF and silane was applied. And then, indirect composite resin was applied. 1000 cycle thermocycling was performed in $5-55^{\circ}C$ and shear bond strength was measured. There were no significant differences between combining veneering porcelain to Y-TZP ceramic group and combining veneering resin to Y-TZP ceramic group in the aspect of shear bond strength (p>.05).

A Steel Ball Impact Damage Behavior of RS-SiC Ceramic Materials (RS-SiC 세라믹 재료의 강구 입자충격 손상 거동)

  • Oh, Sang-Yeob
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.8
    • /
    • pp.1015-1021
    • /
    • 2010
  • In this study, the effect of the C/SiC composition ratio on the impact damage of a reaction sintered SiC (RS-SiC) plates was evaluated. An impact test was conducted by using an air gun. The impacter used was a steel ball with a diameter of 2 mm, and the impact velocities were 113, 122, and 180 m/s. The RS-SiC plates were $20\times20\times3$ mm with different C/SiC composition ratios. The ring crack diameters damaged by a steel ball were determined using SEM images. It was observed that the maximum diameter increased with increasing impact velocity, and it rapidly changed with increasing C/SiC composition ratio because of the effect of residual Si and the variation flexural strength. Cone cracks were formed in the case of C/SiC composition ratios of 0.4~0.5, this indicated that the impact damage changed from a ring crack to a cone crack in this critical range of C/SiC composition ratios. The C/SiC composition ratio of 0.3 was determined to be the optimal ratio for the RS-SiC manufacturing process.

Electrical and mechanical properties of NiO doped Pb(Ni$_{1}$3/Nb$_{2}$3/)O$_3$-PbTiO$_3$-PbZrO$_3$-ceramics (NiO-Doped Pb(Ni$_{1}$3/Nb$_{2}$3/)O$_3$-PbTiO$_3$-PbZr$_3$-O세라믹스의 전기 및 기계적 특성에 관한 연구)

  • 나은상;김윤호;최성철
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.3
    • /
    • pp.245-251
    • /
    • 2000
  • Dielectric properties, piezoelectric properties and mechanical properties of NiO-doped Pb($(Ni_{1/3}Nb_{2/3})O_3-PbTiO_3-PbZrO_3$ ceramics were investigated. Powders, prepared by columbite precursor method, were cold pressed and sintered at temperature ranging from $1100^{\circ}C$ to $1250^{\circ}C$. Dielectric constant and piezoelectric constant increased with amount of NiO up to 1 mol% and then decreased with further addition of NiO. It seems that NiO acts as a sintering aid at the sintering temperatures of $1150^{\circ}C$. When the samples were sintered at temperature above $1200^{\circ}C$, however, both dielectric constant and electromechanical coupling factor decreased and mechanical quality coefficient increased with addition of NiO. Hardness and fracture toughness of PNN-PT-PZ increased with addition of NiO up to 1 mol%, and then decreased slightly with further addition of NiO. These results showed that dielectric properties, piezoelectric properties and mechanical properties of PNN-PT-PZ system seemed to be closely related with microstructural factors such as grain size, bulk density and the amount of second phase.

  • PDF

Microstructure of Yttria-doped Ceria-Stabilized Zirconia Polycrystals (Yttria를 도핑한 세리아 안정화 지르코니아 세라믹스의 미세구조)

  • Lee, J.K.;Kang, H.H.;Seo, D.S.;Lee, E.G.;Kim, H.
    • Korean Journal of Materials Research
    • /
    • v.9 no.8
    • /
    • pp.768-774
    • /
    • 1999
  • Yttia-doped ceria-stabilized ziconia polycrystals(Ce-TZP) was prepared by dipping method and its microstructure was investigated. By controlling doped-yttria content and annealing condition, yttria-doped Ce-TZP showed the microstructure with irregular grain shape and undulated grain boundary. Irregularity of grain shape increased with the amount of yttria doped, and severe undulated grain boundary was observed mainly at the surface region. In the case of yttria-doped Ce-TZP annealed at 1$650^{\circ}C$ for 2h after two dipping times into yttrium nitrate solution of 0.2M, it showed irregular grain shape both at the surface and at the interior region as well as the most severe irregularity. Hot pressed specimen had mean grain size of 0.3$\mu\textrm{m}$ and undulated grain boundary. All specimens with irregular grain shape were retained the tetragonal phase. The fracture toughness of yttria-doped Ce-TZP with irregular grain shape was over the value of 17.6MPa.m(sup)1/2.

  • PDF

A Study on Mechanical Interfacial Properties of Copper-plated Carbon Fibers/Epoxy Resin Composites (구리도금된 탄소섬유/에폭시 수지 복합재료의 기계적 계면 특성에 관한 연구)

  • Hong, Myung-Sun;Bae, Kyong-Min;Choi, Woong-Ki;Lee, Hae-Seong;Park, Soo-Jin;An, Kay-Hyeok;Kim, Byung-Joo
    • Applied Chemistry for Engineering
    • /
    • v.23 no.3
    • /
    • pp.313-319
    • /
    • 2012
  • In this work, the electroplating of copper was introduced on PAN-based carbon fibers for the enhancement of mechanical interfacial strength of carbon fibers-reinforced composites. The surface properties of carbon fibers were determined by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and contact angle measurements. Its mechanical interfacial properties of the composites were studied by interlaminar shear strength (ILSS) and critical stress intensity factor ($K_{IC}$). From the results, it was found that the mechanical interfacial properties of Cu-plated carbon fibers-reinforced composites (Cu-CFRPs) enhanced with increasing the Cu plating time, Cu content and COOH group up to Cu-CFRP-30. However, the mechanical interfacial properties of the Cu-CFRPs decreased dramatically in the excessively Cu-plated CFRPs sample. In conclusion, the presence of Cu particles on carbon fiber surfaces can be a key factor to determine the mechanical interfacial properties of the Cu-CFRPs, but the excessive Cu content can lead the failure due to the interfacial separation between fibers and matrices in this system.

FRACTURE TOUGHNESS OF SELF-CURING DENTURE BASE RESINS WITH DIFFERENT POLYMERIZING CONDITIONS (의치상용 자가중합레진의 중합조건에 따른 파괴인성)

  • Jeong Soo-Yang;Kim Ji-Hye;Yang Byung-Deok;Park Ju-Mi;Song Kwang-Yeob
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.43 no.1
    • /
    • pp.52-60
    • /
    • 2005
  • Purpose. The intent of this study was to evaluate the effects of curing conditions on self-curing denture base resins to find out proper condition in self-curing resin polymerization. Materials and methods, In this study, 3 commercial self-curing denture base resins are used Vertex SC, Tokuso Rebase and Jet Denture Repair Acrylic. After mixing the self curing resin, it was placed in a stainless steel mold(3$\times$6$\times$60mm). The mold containing the resin was placed under the following conditions: in air at 23$^{\circ}C$; or in water at 23$^{\circ}C$; or in water at 23$^{\circ}C$ under pressure(20psi); or in water at 37$^{\circ}C$ under pressure(20psi) or in water at 50$^{\circ}C$ under pressure(20psi) , or in water at 65$^{\circ}C$ under pressure(20psi), respectively. Also heat-curing denture base resin is polymerized according to manufactures' instructions as control. Fracture toughness was measured by a single edge notched beam(SENB) method. Notch about 3mm deep was carved at the center of the long axis of the specimen using a dental diamond disk driven by a dental micro engine. The flexural test was carried out at a crosshead speed 0.5mm/min and fracture surface were observed under measuring microscope. Results and conclusion . The results obtained were summarized as follows : 1. The fracture toughness value of self-curing denture base resins were relatively lower than that of heat-curing denture base resin. 2. In Vertex SC and Jet Denture Repair Acrylic, higher fracture toughness value was observed in the curing environment with pressure but in Tokuso Rebase, low fracture toughness value was observed but there was no statistical difference. 3. Higher fracture toughness value was observed in the curing environment with water than air but there was no statistical difference. 4. Raising the temperature in water showed the increase of fracture toughness.