• Title/Summary/Keyword: 파괴확률

Search Result 433, Processing Time 0.033 seconds

Evaluation of Partial Safety Factors for Armor Units of Coastal Structures (피복재의 부분안전계수 산정)

  • Lee, Cheol-Eung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.4
    • /
    • pp.336-344
    • /
    • 2007
  • A method is developed to evaluate partial safety factors for armor units, by which uncertainties of random variables in reliability function as well as wave height distribution with service periods could take into account straightforwardly. It is found that partial safety factors for resistance and wave height are correctly increased with improving target levels on failure of coastal structures at the same return and service periods. Therefore, it nay be possible to determine design variables through the same processes as those of deterministic method by using the partial safety factors for resistance and wave height evaluated in this paper, since uncertainties of random variables and the effects of service periods and target probability failure are directly considered in the processes of evaluation of partial safety factors.

Micro-Surface-Cracks Behavior of 304 Stainless Steel Under Creep-Fatigue Interaction at Elevated Temperature (고온하 304 스테인리스강의 크리프-피로상호작용하의 미소표면균열에 관한 파괴거동)

  • 서창민;이상돈;조일현
    • Journal of Ocean Engineering and Technology
    • /
    • v.2 no.2
    • /
    • pp.104-111
    • /
    • 1988
  • This paper deals with the micro-surface-cracks behavior on the unnotched smooth specimens of Type 304 stainless steel at $593^{\circ}C$ in air under creep and creep-fatigue conditions that have 10 mim and 1 min load holding times respectively. The behaviors of the micro-surface-cracks have been visualized by means of surface replica method and optical micro-photography. The quantitative characteristics of initiation, growth and coalescence of micro-surface-cracks have been investigated by observing and measuring the crack growth behaviors. some of the important results are as follows: Main crack initiates at grain boundary in the early stage(10 to 20%)of its life time and grows through coalescence and finally leads to fracture. The distribution of micro-surface-crack length, 2a, can be plotted against the composite Weibull distribution. The growth rate of the main crack can be plotted against the stress intensity factor, crack tip opering displacement and J integral.

  • PDF

Nanoparticle Size Effect on Mechanical Properties of Carbon Fiber-reinforced Polymer Composites (탄소섬유강화 에폭시수지의 기계적 성질에 미치는 나노입자크기의 영향)

  • Moon, Chang-Kwon;Kim, Bu-Ahn
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.2
    • /
    • pp.186-190
    • /
    • 2015
  • $TiO_2$ nanoparticles can be used to improve the performance of carbon fiber-reinforced epoxy resin composites. In this study, the effect of the size of $TiO_2$ nanoparticles on the mechanical properties of carbon fiber-reinforced epoxy resin composites was investigated. The size of the $TiO_2$ nanoparticles was easily controlled using heat treatment. The size of the $TiO_2$ nanoparticles for this study were20nm, 100nm, and 200nm. Three types of carbon fibers with different diameters were also used in this study. The carbon fiber-reinforced epoxy resin composites with 20-nm $TiO_2$ powder showed the highest tensile strength compared to the other types of CFRP, regardless of the fiber maker or fiber diameter. The size of the $TiO_2$ powder and the diameter of the carbon fiber strongly affected the interfacial properties of all kinds of CFRP in this study.

A Study on the Optimized Design of Structures Considering Reliability Analysis (신뢰성을 고려한 구조물의 최적설계에 관한 연구)

  • Park, Hyun-Jung;Shin, Soo-Mi
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.4
    • /
    • pp.217-224
    • /
    • 2003
  • The objective of this paper is to suggest the technique of program to perform structural optimization design after reliability analysis to consider the uncertainties of structural reponses. AFOSM method is used for reliability analysis then, structural optimization design is developed for 10-bar truss and 3 span 10 stories planar frame model is subject to reliability indices and probability of failure by reliability analysis. SQP method is used for optimization design method, this method has many attractions. As a result of analyzing with having and not having constraints and uncertainty, the minimum weight of truss and planar frame increased respectively 20.92% and average 8.08%.

A Development of Hydrologic Risk Analysis Model for Small Reservoirs Based on Bayesian Network (Bayesian Network 기반 소규모 저수지의 수문학적 위험도 분석 모형 개발)

  • Kim, Jin-Guk;Kim, Jin-Young;Gwon, Hyeon-Han;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.105-105
    • /
    • 2017
  • 최근 우리나라에서는 국지성호우로 인해 발생하는 돌발홍수에 방어하지 못하는 소규모 저수지에 대한 붕괴사고가 빈발하고 있다. 붕괴된 저수지를 살펴보면, 대체적으로 규모가 작아 체계적인 안전관리가 이루어지지 않거나 경과연수가 50년 이상인 필댐(fill dam) 형식으로 축조된 노후저수지로서 갑작스러운 홍수를 대응하는데 있어 매우 취약한 상태이다. 체계적으로 운영되는 대형댐에 비해 축조기간이 오래된 소규모 저수지의 경우, 저수지에 대한 수문학적 정보가 거의 없거나 미계측되어 보수보강이 필요한 저수지를 선정하거나 정량적인 위험도를 분석하는데 매우 어려운 실정이다. 이러한 이유로 본 연구에서는 노후된 소규모 저수지에 대한 수문학적 파괴인자들을 선정하여 Bayesian Network기반의 소규모 저수지 위험도 분석 모형을 구축하였다. 구축된 모형을 기준으로 고려될 수 있는 다양한 위험인자 및 이들 인자간의 연관성을 평가하였으며, 각각의 노드에 파괴인자를 노드로 할당하여 소규모 저수지의 위험도를 분석하였다. Bayesian Network기법의 도입으로 불확실한 상황을 확률로 표시하고, 복잡한 추론을 정량화된 노드의 관계로 단순화시켜 노드의 연결 관계로 표현하였다. 본 연구에서 제안된 모형은 노후된 소규모 저수지의 수문학적 위험도를 정량으로 분석하는 모형으로서 활용성이 높을 것으로 기대된다.

  • PDF

An application of risk assessment method for coastal dike failure mechanisms due to erosion (방조제 침식에 의한 복합 매커니즘을 고려한 위험도 평가 기법)

  • Jung, Min-Kyu;Lee, Baeg;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.292-292
    • /
    • 2020
  • 방조제는 국토 확장, 수자원 확보 및 배수 개선에 사용되는 구조물로, 재난 발생 시 자산, 국가산업 및 환경에 큰 영향을 끼칠 위험이 있다. 따라서, 파도월류, 지진, 투수, 액상화와 같은 다양한 피해 원인에 대비하여 구조적 사용성과 안정성을 확보하기 위해 신중한 검토 및 분석이 수행된다. 그러나 변화하는 환경조건에서 방조제는 다양한 외력의 변동성과 불확실성에 노출되며, 설계 시 고려된 손상 요인이 개별적으로 발생하기보다는 여러 요인이 복합적으로 반응하고 그 영향이 전달되어 피해의 발생과 전파 과정이 복잡한 양상을 나타낸다. 따라서 방조제에 대한 사고 예방 및 안정적인 유지관리를 위해서는 발생 가능한 위험을 종합적으로 고려한 위험도 평가가 중요하게 요구된다. 본 연구에서는 방조제 손상 원인 중 큰 비중을 차지하는 제체 내부 침식 위험에 대하여 위험인자 간 상호작용을 고려할 수 있는 확률통계학적 접근으로 Bayesian network 기법을 도입하였다. 위험인자에 대한 파괴 메커니즘을 조사하여 분류 후, 설계값과 측정자료를 기반으로 위험변수의 통계적 특성을 반영하기 위해 Monte Carlo 시뮬레이션을 수행하여 파괴 매커니즘의 위험도를 계산하였다. 위험도는 연간기대피해액으로 제공되었으며, 이는 방조제 손상으로 인한 피해에 대비하여 예방할 수 있는 솔루션을 제공할 것으로 기대된다.

  • PDF

The Effect of Analysis Variables on the Failure Probability of the Reactor Pressure Vessel by Pressurized Thermal Shock (가압열충격에 의한 원자로 압력용기의 파손확률에 미치는 해석변수의 영향)

  • Jang, Chang-Heui;Jhung, Myung-Jo;Kang, Suk-Chull;Choi, Young-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.6
    • /
    • pp.693-700
    • /
    • 2004
  • The probabilistic fracture mechanics(PFM) is a useful analytical tool to assess the integrity of reactor pressure vessel(RPV) at the event of pressurized thermal shock(PTS). In PFM, the probabilities of flaw initiation and propagation are estimated by comparing the applied stress intensity factor with the fracture toughness calculated by the simulation of various stochastic variables. It is known that the results of PFM analyses are dependent on the choice of the stochastic parameters and assumptions. Of the various variables and assumptions, we investigated the effects of the RT$_{NDT}$ shift equations, fracture toughness curves, and flaw distributions on the PFM results for the three PTS transients. The results showed that the combined effects of the RT$_{NDT}$ shift equations and fracture toughness curves are complicated and dependent on the characteristics of the transients, the chemistry of the materials, the fast neutron fluence, and so on.

Probabilistic Evaluation of RV Integrity Under Pressurized Thermal Shock (가압열충격을 받는 원자로용기의 확률론적 건전성 평가)

  • Kim, Jong-min;Bae, Jae-hyun;Sohn, Gap-heon;Yoon, Ki-seok;Choi, Taek-Sang
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.90-95
    • /
    • 2004
  • The probabilistic fracture analysis is used to determine the effects of uncertainties involved in material properties, location and size of flaws, etc, which can not be addressed using a deterministic approach. In this paper the probabilistic fracture analysis is applied for evaluating the RV(Reactor Vessel) under PTS(Pressurised Thermal Shock). A semi-elliptical axial crack is assumed in the inside surface of RV. The selected random parameters are initial crack depth, neutron fluence, chemical composition of material (copper, nickel and phosphorous) and $RT_{NDT}$. The deterministically calculated $K_I$ and crack tip temperature are used for the probabilistic calculation. Using Monte Carlo simulation, the crack initiation probability for fixed flaw and PNNL(Pacific Northwest National Laboratory) flaw distribution is calculated. As the results show initiation probability of fixed flaw is much higher than that of PNNL distribution, the postulated crack sizes of 1/10t in this paper and 1/4t of ASME are evaluated to be very conservative.

  • PDF

Probabilistic Seismic Damage Assessment of Structures (구조물의 확률론적 지진손상평가)

  • Lee, Seong Lo;Oh, Byung Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.5
    • /
    • pp.1097-1104
    • /
    • 1994
  • The external loads applied to a real structure may cause a severe damage and may eventually lead to total failure. It is thus the requirement that the structure must be designed to fulfil its safe function under any anticipated loads and must have the desired level of safety. The purpose of the present study is to propose a method of damage accumulation under seismic loadings to utilize it in the safety assessment of a reinforced concrete structure. To this end, the nonlinear hysteretic behavior of reinforced concrete structures is first modeled and the equivalent linearization technique is employed to solve numerically the probabilistic characteristics of response under random seismic loadings.

  • PDF

Failure Probability Assessment of Gas Pipelines Considering Wall-Thinning Phenomenon (감육현상을 고려한 가스배관의 파손확률 평가)

  • Lee Sang-Min;Yun Kang-Ok;Chang Yoon-Suk;Choi Jae-Boons;Kim Young-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.10 s.175
    • /
    • pp.158-166
    • /
    • 2005
  • Pressurized gas pipeline is subject to harmful effects both of the surrounding environment and of the materials transmitted in them. In order to maintain the integrity, reliable assessment procedures including tincture mechanics analysis etc are required. Up to now, the integrity assessment has been performed using conventional deterministic approaches even though there are many uncertainties to hinder a rational evaluation. In this respect, probabilistic approach is considered as an appropriate method for gas pipeline evaluation. The objectives of this paper are to estimate the failure probability of corroded pipeline in gas and oil plants and to propose limited operating conditions under different types of leadings. To do this, a probabilistic assessment program using reliability index and simulation techniques was developed and applied to evaluate failure probabilities of corroded API-5L-X52/X60 gas pipelines subjected to internal pressure, bending moment and combined loading. The evaluation results showed a promising applicability of the probabilistic integrity assessment program.