• Title/Summary/Keyword: 파괴영역

Search Result 535, Processing Time 0.025 seconds

A Study on the Improvement of Impulse Breakdown Characteristics due to Variation of Temperature Epoxy/SiO2 Composite Material for Electric Installation (전기설비용 Epoxy/SiO2 복합재료의 온도변화에 의한 충격전압 절연파괴특성 개선에 관한 연구)

  • 박창옥;심종탁;김명호;가출현;김경환;김재환
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.7 no.5
    • /
    • pp.29-35
    • /
    • 1993
  • 본 논문에서는 에폭시 수지에 충전제 SiO2의 함량(0, 50, 100, 150w%)에 따라 제작한 에폭시 복합재료에 대한 충전제 함량, 온도, 두께, 충격전압에 따른 절연파괴강도의 온도의존성과 계면처리효과에 대한 절연파괴특성에 대하여 연구하였다. 연구결과로, 임펄스 전압인가에 따른 절연파괴강도의 온도의존성은 저온영역에서는 ∂EBD/∂T 0의 경향을 나타내며, 절연파괴기구로서는 전자사태파괴를 생각할 수 있다. 고온 영역에서는 ∂EBD/∂T〈0의 경향을 확인하였다. 계면처리효과에 따른 절연파괴강도의 온도의존성은 충전제함량이 적은 경우(충전제함량 50wt%이하)는 모든 영역에서는 계면처리시료의 절연파괴강도가 상승하였으나, 고온영역에서는 충전제 함량이 증가할수록(100wt%이상) 계면처리효과가 저하하였다.

  • PDF

Estimation of Local Strain Distribution of Shear-Compressive Failure Type Beam Using Digital Image Processing Technology (화상계측기법에 의한 전단압축파괴형 보의 국부변형률분포 추정)

  • Kwon, Yong-Gil;Han, Sang-Hoon;Hong, Ki-Nam
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.2
    • /
    • pp.121-127
    • /
    • 2009
  • The failure behavior of RC structure was exceedingly affected by the size and the local strain distribution of the failure zone due to the strain localization behavior on the tension softening materials. However, it is very difficult to quantify and assess the local strain occurring in the failure zone by the conventional test method. In this study, image processing technology, which is available to measure the strain up to the complete failure of RC structures, was used to estimate the local strain distribution and the size of failure zone. In order to verify the reliability and validity for the image processing technology, the strain transition acquired by the image processing technology was compared with strain values measured by the concrete gauge on the uniaxial compressive specimens. Based on the verification of image processing technology for the uniaxial compressive specimens, the size and the local strain distribution of the failure zone of deep beam was measured using the image processing technology. With the results of test, the principal tensile/compressive strain contours were drawn. Using the strain contours, the size of the failure zone and the local strain distribution on the failure of the deep beam was evaluated. The results of strain contour showed that image processing technology is available to assess the failure behavior of deep beam and obtain the local strain values on the domain of the post-peak failure comparatively.

Progressive Fracture Analyses of Concrete by Finite Element Methods (유한요소법에 의한 콘크리트의 진행성 파괴해석)

  • 송하원
    • Magazine of the Korea Concrete Institute
    • /
    • v.8 no.1
    • /
    • pp.145-153
    • /
    • 1996
  • The fracture process zone in concrete is a region ahead of a traction-free crack, in which two major mechanisms, microcracking and bridging, play important roles. The toughness due to bridging is dominant compared to toughness induced by microcracking, so that the bridging is dominani: mechanism governing the fracture process of concrete. Fracture mechanics does work for concrete provided that the fracture process zone is being considered, so that the development of model for the fracture process zone is most important to describe fracture phenomena in concrete. In this paper the bridging zone, which is a part of extended rnacrocrack with stresses transmitted by aggregates in concrete, is modelled by a Dugdale-Barenblatt type model with linear tension-softening curve. Two finite element techniques are shown for the analysis of progressive cracking in concrete based on the discrete crack approach: one with crack element, the other without crack element. The advantage of the technique with crack element is that it dees not need to update the mesh topology to follow the progressive cracking. Numerical results by the techniques are demonstrated.

SA106 Gr.C 모재와 용접재의 파괴인성에 미치는 온도와 하중속도의 영향

  • 김진원;박치용;김범년;김인섭
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05b
    • /
    • pp.324-329
    • /
    • 1998
  • 본 연구는 주증기배관으로 사용되고 있는 SA106. Gr.C의 모재와 용접계에 대해서 파괴인성에 미치는 온도와 하중속도의 영향을 살펴보기 위해서 다양한 온도와 하중속도에서 J-R 시험 및 인장시험을 수행하였다. 두 재료 모두 동적변형시효의 영향을 받고 있는 온도영역에서 약 40% 정도의 파괴인성 감소가 관찰되었으며, 하중속도에 따른 파괴인성 감소영역은 serration과 인장강도 증가 영역의 하중속도 의존성과 일치하였다. 원자력발전소 운전온도에서 모재와 용접재 모두 하중선변위속도가 4.0mm/min 일 때 파괴인성치의 최저를 보였으며, 하중속도가 증가함에 따라 증가하여 동적하중속도(800, 40mm/min)일 때 최대를 보였다. 모재와 용접재를 비교하면 용접재에서 serration이 뚜렸했고, 보다 넓은 온도영역에서 관찰되었다. 또한 인장강도의 증가가 보다 고온에서 형성되었다. 이러한 특성은 용접재가 모재에 비해 냉각률이 크고 미세한 결정입으로 이루어져있으며, 망간의 함량이 높기 때문으로 판단된다.

  • PDF

Fracture Analysis of Notched Laminated Composites using Cohesive Zone Modeling (응집영역 모델링 기법을 사용한 노치가 있는 적층복합재료의 파괴해석)

  • Woo, Kyeongsik;Cairns, Douglas S.
    • Composites Research
    • /
    • v.30 no.2
    • /
    • pp.149-157
    • /
    • 2017
  • In this paper, fracture behavior of laminated composites with notch was studied by cohesive zone modeling approach. The numerical modeling proceeded by first generating 3 dimensional solid element meshes for notched laminated composite coupon configurations. Then cohesive elements representing failure modes of fiber fracture, matrix cracking and delamination were inserted between bulk elements in all regions where the corresponding failures were likely to occur. Next, progressive failure analyses were performed simulating uniaxial tensile tests. The numerical results were compared to those by experiment available in the literature for verification of the analysis approach. Finally, notched laminated composite configurations with selected stacking sequences were analyzed and the failure behavior was carefully examined focusing on the failure initiation and progression and the dominating failure modes.

Literature Review of Fracture Mechanics and Blasting and Excavation Damaged Zone (파괴역학과 굴찰과 발파로 인한 암반 손상영역의 문헌적 고찰)

  • Yang H.S.;Ha T.W.;Kim W.B.;Jung J.H.
    • Tunnel and Underground Space
    • /
    • v.16 no.3 s.62
    • /
    • pp.209-217
    • /
    • 2006
  • Literatures on the fracture mechanics and damaged zone of rocks were studied to estimate the excavation and blasting damaged zone for rapid tunneling. Fracture mechanics were applied to explain fracture mechanism and to estimate damaged zone and seemed to be applicable for controlling the fractures.

A Study on the Stress Induced Brittle Failure around Openings with Cross-sectional Shape by Scaled Model Test and DEM Simulation (모형시험과 개별요소법을 이용한 단면 형상에 따른 공동 주변 취성파괴에 관한 연구)

  • Bae, Seong-Ho;Jeon, Seok-Won;Park, Eui-Seob
    • Tunnel and Underground Space
    • /
    • v.17 no.5
    • /
    • pp.389-410
    • /
    • 2007
  • For moderately jointed to massive rock masses, the failure and deformation behaviors around an excavated opening are absolutely influenced by the initial rock stress and strength of in-situ rock mass. The localized and progressive brittle failure around an opening does not mean whole collapse of an excavated opening. But, for many cases, it may induce temporary stopping of excavation works and reexamination of the current supporting system, which can result in delay of the entire construction works and additional construction cost. In this paper, the characteristics of the brittle failure around an opening with stress level and tunnel shape was studied by the biaxial compressive test using scaled specimen and by the numerical simulation with $PFC^{2D}$. The biaxial test results were well coincided with the stress induced failure patterns around the excavated openings observed and monitored in the in-situ condition. For the circular part of the opening wall, the stress induced cracks initially occurred at the wall surface in the direction of the minimum principal stress and contributed to the localized notch shaped failure region having a certain range of angle. But for the corner and straight part of the opening wall, the cracks initiated at sharp corners were connected and coalesced each other and with existing micro cracks. Further they resulted in a big notch shaped failure region connecting two sharp corners.

A study on the electrical breakdown characteristics of thermal treated low density polyethylene film (열처리된 저밀도폴리에틸렌의 절연파괴특성에 관한 연구)

  • ;Y.Suzuoki;M.Mizutani
    • Electrical & Electronic Materials
    • /
    • v.6 no.4
    • /
    • pp.366-373
    • /
    • 1993
  • 고체구조와 절연파괴의 관계를 확실하게 알아보기 위하여 온도 100[.deg.C]의 실리콘유 내에서 1시간 열처리한 시료에 대해서 직류(DC)와 임펄스 절연파괴특성을 검토했다. 시료의 결정화도는 적외선 흡수와 X선 회절실험 측정방법으로 평가했으며 그리고 시료의 결정립크기와 분상은 시차주사 열량측정을 이용하였다. 실험결과 결정화도의 크기는 서냉, 수냉, 원시료 그리고 급냉시료 순으로 적어짐을 확인하였고 각각 70.23[%], 61.6[%], 56.75[%] 및 34.7[%]를 얻었다. 온도 30, 50[.deg.C]에서 임펄스 절연파괴특성은 결정화도의 감소에 따라 높아지는데 이것은 전자열적파괴를 시사하고 있다. 그리고 온도의 증가에 따라 임펄스 절연파괴강도는 감소되는데 이것은 Frohlich-type의 파괴이론을 제시한다. 또한 직류절연파괴는 저온영역에서 결정화도에 거의 의존하지 않지만 그러나 고온영역에서는 약간 의존한다.

  • PDF

An evaluation of the pipe failure impact in a water distribution system considering subsystem isolation (상수관 파괴시 관망의 부분적 격리를 고려한 피해범위 산정)

  • Jun, Hw-Andon
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.2 s.163
    • /
    • pp.89-98
    • /
    • 2006
  • To evaluate the pipe failure impact, current methodologies consider only a broken pipe as the impacted area. However, these approaches are accurate if the broken pipe is the only area isolated from tile system. Depending on the number and locations of on-off valves, more pipes which are adjacent to a broken pipe may be isolated. Using the concept of Segment suggested by Walski, the methodology evaluating the pipe failure impact incorporated with on-off valve locations has been suggested by Jun. However, a segment cannot account for all possible pipe failure impacted areas since it does not consider additional failures, namely the network topological failure and the hydraulic pressure failure. For this reason, a methodology which can consider the network topology and hydraulic pressure limitation as well as on-off valve locations is suggested. The suggested methodology is applied to a real network to verify its applicability As results, it is found that a single pipe failure can affect huge areas depending on the configuration of on-off valves and the network topology. Thus, the applicability of the suggested methodology for evaluating the pipe failure impacts on a water distribution network is proved.

Numerical modeling of brittle failure of the overstressed rock mass around deep tunnel (심부 터널 주변 과응력 암반의 취성파괴 수치모델링)

  • Lee, Kun-Chai;Moon, Hyun-Koo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.5
    • /
    • pp.469-485
    • /
    • 2016
  • The failure of rock mass around deep tunnel, different from shallow tunnel largely affected by discontinuities, is dominated by magnitudes and directions of stresses, and the failures dominated by stresses can be divided into ductile and brittle features according to the conditions of stresses and the characteristics of rock mass. It is important to know the range and the depth of the V-shaped notch type failure resulted from the brittle failure, such as spalling, slabbing and rock burst, because they are the main factors for the design of excavation and support of deep tunnels. The main features of brittle failure are that it consists of cohesion loss and friction mobilization according to the stress condition, and is progressive. In this paper, a three-dimensional numerical model has been developed in order to simulate the brittle behavior of rock mass around deep tunnel by introducing the bi-linear failure envelope cut off, elastic-elastoplastic coupling and gradual spread of elastoplastic regions. By performing a series of numerical analyses, it is shown that the depths of failure estimated by this model coincide with an empirical relation from a case study.