• Title/Summary/Keyword: 파괴시기 예측

Search Result 18, Processing Time 0.028 seconds

Failure Prediction for Weak Rock Slopes in a Large Open-pit Mine by GPS Measurements and Assessment of Landslide Susceptibility (대규모 노천광 연약암반 사면에서의 GPS 계측과 위험도평가에 의한 파괴예측)

  • SunWoo, Choon;Jung, Yong-Bok;Choi, Yo-Soon;Park, Hyeong-Dong
    • The Journal of Engineering Geology
    • /
    • v.20 no.3
    • /
    • pp.243-255
    • /
    • 2010
  • The slope design of an open-pit mine must consider economical efficiency and stability. Thus, the overall slope angle is the principal factor because of limited support or reinforcement options available in such a setting. In this study, slope displacement, as monitored by a GPS system, was analyzed for a coal mine at Pasir, Indonesia. Predictions of failure time by inverse velocity analysis showed good agreement with field observations. Therefore, the failure time of an unstable slope can be roughly estimated prior to failure. A GIS model that combines fuzzy theory and the analytical hierarchy process (AHP) was developed to assess slope instability in open-pit coal mines. This model simultaneously considers seven factors that influence the instability of open-pit slopes (i.e., overall slope gradient, slope height, surface flows, excavation plan, tension cracks, faults, and water body). Application of the proposed method to an open-pit coal mine revealed an enhanced prediction accuracy of failure time and failure site compared with existing methods.

Monitoring of Cut-Slope Behavior with Consideration of Rock Structure and Failure Mode (개착사면의 구조적 특성과 파괴양상을 고려한 계측 해석)

  • Cho, Tae-Chin;Park, So-Young;Lee, Sang-Bae;Lee, Geun-Ho;Won, Kyung-Sik
    • Tunnel and Underground Space
    • /
    • v.16 no.6 s.65
    • /
    • pp.451-466
    • /
    • 2006
  • Analysis of slope behavior concerning the structural characteristics of field rock mass can be processed by virtue of borehole information of joint orientation and position acquired from DOM drilled core. Anticipated sliding potential of pre-failed rock slope is analyzed and the regional slope instability is investigated by inspecting the hazardous joints and blocks the traces of which is projected on the cut-face. Cross section has been set at the center of rock slope and the traces of both joints and tetrahedral blocks, which potentially can induce the slope failure, are drawn to investigate the failure modes and the triggering mechanism. Automated monitoring system has been established to measure the slope movement and especially, inclinometer has been installed inside DOM borehole to analyze the slope movement by considering the internal rock structure. Algorithms for predicting the slope failure time have been reviewed and the significance of heavy rainfall on the slope behavior has been investigated.

Investigation of Rock Slope Failures based on Physical Model Study (모형실험을 통한 암반사면의 파괴거동에 대한 연구)

  • Cho, Tae-Chin;Suk, Jae-Uk;Lee, Sung-Am;Um, Jeong-Gi
    • The Journal of Engineering Geology
    • /
    • v.18 no.4
    • /
    • pp.447-457
    • /
    • 2008
  • Laboratory tests for single plane sliding were conducted using the model rock slope to investigate the cut slope deformability and failure mechanism due to combined effect of engineering characteristics such as angle of sliding plane, water force, joint roughness and infillings. Also the possibility of prediction of slope failure through displacement monitoring was explored. The joint roughness was prepared in forms of saw-tooth type having different roughness specifications. The infillings was maintained between upper and lower roughness plane from zero to 1.2 times of the amplitude of the surface projections. Water force was expressed as the percent filling of tension crack from dry (0%) to full (100%), and constantly increased from 0% at the rate of 0.5%/min and 1%/min upto failure. Total of 50 tests were performed at sliding angles of $30^{\circ}$ and $35^{\circ}$ based on different combinations of joint roughness, infilling thickness and water force increment conditions. For smooth sliding plane, it was found that the linear type of deformability exhibited irrespective of the infilling thickness and water force conditions. For sliding planes having roughness, stepping or exponential types of deformability were predominant under condition that the infilling thickness is lower or higher than asperity height, respectively. These arise from the fact that, once the infilling thickness exceeds asperities, strength and deformability of the sliding plane is controlled by the engineering characteristics of the infilling materials. The results obtained in this study clearly show that the water force at failure was found to increase with increasing joint roughness, and to decrease with increasing filling thickness. It seems possible to estimate failure time using the inverse velocity method for sliding plane having exponential type of deformability. However, it is necessary to estimate failure time by trial and error basis to predict failure of the slope accurately.

Determination of Critical Slope Height for Large Open-pit Coal Mine and Analysis of Displacement for Slope failure Prediction (대규모 노천 석탄광산의 한계사면높이 결정과 사면파괴 예측을 위한 계측자료 해석)

  • Jung, Yong-Bok;SunWoo, Choon;Lee, Jong-Beom
    • Tunnel and Underground Space
    • /
    • v.18 no.6
    • /
    • pp.447-456
    • /
    • 2008
  • Open-pit mine slope design must be carried out from the economical efficiency and stability point of view. The overall slope angle is the primary design variable because of limited support or reinforce options available. In this study, the slope angle and critical slope height of large coal mine located in Pasir, Kalimantan, Indonesia were determined from safety point of view. Failure time prediction based on the monitored displacement using inverse velocity was also conducted to make up fir the uncertainty of the slope design. From the study, critical slope height was calculated as $353{\sim}438m$ under safety factor guideline (SF>1.5) and $30^{\circ}$ overall slope angle but loom is recommended as a critical slope height considering the results of sensitivity analysis of strength parameters. The results of inverse velocity analysis also showed good agreement with field slope cases. Therefore, failure of unstable slope can be roughly detected before real slope failure.

대용량 회전기의 전기절연 진단 시험기술

  • 조연옥;류희석
    • 전기의세계
    • /
    • v.38 no.11
    • /
    • pp.11-20
    • /
    • 1989
  • 고압회전기의 고정자권선에는 열, 전기 및 기계적, 환경적 스트레스가 단독 또는 복합적으로 가해지며, 이러한 응력들은 기기의 크기, 정력, 동작상태 등에 따라서 변화된다. 따라서 주기적인 절연진단 시험을 통하여 절연상태를 평가하고 그 변화추이를 검토하여 잔여수명을 예측함으로써 보수 및 교체시기를 계획하여 절연파괴로 인한 대형사고를 예방하는 것이 가장 바람직하다. 본 논문에서는 대용량 회전기의 정지기간 동안 실시하는 진단시험 및 열화상태 판정법등에 관하여 서술하고자 한다.

  • PDF

최신 압입시험기를 이용한 산업설비의 비파괴 안전진단

  • Lee, Yoon-Hee;An, Jung-Hoon;Choi, Yeol;Son, Dong-Il;Jang, Jae-Il;Kwon, Dong-Il
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 2000.11a
    • /
    • pp.9-16
    • /
    • 2000
  • 1970년대의 급격한 경제 성장시기에 건설된 구조물들은 30년 이상의 사용으로 인해 노후화가 심각하며 대형 산업재해의 가능성을 가지고 있다. 따라서 노후 설비들의 안전 한 사용을 위해서는 소재 물성의 정기적인 진단을 통한 정확한 수명예측이 필요하다. 그러나 기존의 소재 물성평가를 위한 표준 방법인 일축인장 및 파괴역학 시험의 경우, 변형 및 파괴 거동에 대한 많은 정보를 제공하고 있지만, Bulk 형태의 표준시편이 필요하여 시편을 채취하는 과정에서 설비와 구조물에 노치에 의한 손상이 가해질 수 있어 구조물의 안전성을 오히려 해치는 결과를 초래할 수 있다. 또한 채취 중의 응력완화 및 손상에 의해 표준시편도 본래 현장 구조물과 다른 물성을 가질 수 있다.(중략)

  • PDF

Laboratory Simulation of Formation, prevention and breaking of Water-in-oil Emulsion (수분함유 기름 에멀젼의 형성경향, 생성방해 및 파괴에 관한 실험적 예측)

  • 강성현;오재룡
    • 한국해양학회지
    • /
    • v.26 no.4
    • /
    • pp.324-331
    • /
    • 1991
  • Laboratory experiments were undertaken in mixing chamber to study the water-in-oil emulsion formation tendency, stability and formation rate of 16 crude oils. Arabian, Iran, Dubai, Isthmus and Daekyung crudes showed high emulsion formation tendency and had water contents of 80-90%. Emulsions of crude oils of middle East were very stable, while Isthmus and Daekyung sudes formed unstable emulsion. Emulsion formation tendency rate, and stability showed significant correlations with asphaltene content of crude oil. To evaluate the possibility of preventing mousse formation, inhibition ability of several dispersants and demulsifier was tested. They inhibited mousse formation at 0.1-0.2% concentrations (v/v). Emulsion inhibition by chemical treatment delayed the time of formation, but did not decrease water content. Demulsifying ability of dispersants and demulsifier was tested because biscous emulsion causes formidable problems in skimming, pumping and recovery operation. British demulsifier Alcohol 0 showed excellent emulsion breaking efficiency at 0.1% of emulsion Vol..

  • PDF

A Statistical Methodology to Estimate the Economical Replacement Time of Water Pipes (상수관로의 경제적 교체시기를 산정하기 위한 통계적 방법론)

  • Park, Su-Wan
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.6
    • /
    • pp.457-464
    • /
    • 2009
  • This paper proposes methodologies for analyzing the accuracy of the proportional hazards model in predicting consecutive break times of water mains and estimating the time interval for economical water main replacement. By using the survival functions that are based on the proportional hazards models a criterion for the prediction of the consecutive pipe breaks is determined so that the prediction errors are minimized. The criterion to predict pipe break times are determined as the survival probability of 0.70 and only the models for the third through the seventh break are analyzed to be reliable for predicting break times for the case study pipes. Subsequently, the criterion and the estimated lower and upper bound survival functions of consecutive breaks are used in predicting the lower and upper bounds of the 95% confidence interval of future break times of an example water main. Two General Pipe Break Prediction Models(GPBMs) are estimated for an example pipe using the two series of recorded and predicted lower and upper bound break times. The threshold break rate is coupled with the two GPBMs and solved for time to obtain the economical replacement time interval.