• Title/Summary/Keyword: 파고 관측

Search Result 192, Processing Time 0.023 seconds

A study on the Automatic ocean wave observation buoy system (해양자동관측용 해상 부이식 파고 시스템에 대한 연구)

  • Lee, Won-Boo;Park, Soo-Hong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.6 no.2
    • /
    • pp.268-273
    • /
    • 2011
  • Withstanding the continuous treat from the typhoon and nasty weather from ocean, the development of the real time monitoring buoy such as ocean wave related monitoring buoy system becomes essential. In this research, the development of the ocean wave monitoring buoy system had been done domestically. The development including the data real-time monitoring (wind, temperature and pressure) added in the buoy, buoy mooring and real-time data communication system. The developed wave monitoring buoy system (drift type, wave direction and wave height type) is expected to meet the demands.

A Study on Calibration of Underestimated Wave Heights Measured by Wave and Tide Gauge (WTG) (저평가된 수압식 파고계(WTG) 관측 파고값 보정방안 연구)

  • Jeong, Weon Mu;Chang, Yeon S.;Oh, Sang-Ho;Baek, Won Dae
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.5
    • /
    • pp.296-306
    • /
    • 2020
  • It has been reported that the wave heights measured by Wave and Tide gauges (WTG) have been underestimated, and thus it is important to improve its measuring accuracy for enhancing estimation of harbor tranquility. In this study, the significant wave heights from WTG were calibrated using measured data from AWAC and Waverider buoys moored at the same four locations with the WTG. It was observed that the product of significant wave height and peak wave period, HT, was not underestimated but linearly proportional between the measurements by two instruments. This linearity was applied to develop 3rd order polynomial functions that best represented the relationship between HT and significant wave heights measured by WTG. These functions were then applied to calibrate the WTG significant wave heights that were lower than 0.7 m, the critical value established for the low waves in this study. The results showed that the linearity between the AWAC (or Waverider buoy) and calibrated wave heights were improved, and the magnitude of underestimated WTG wave heights were increased to be more realistic. The results of this study are expected to be effectively applied for other data sets obtained by WTG only, to increase the observation accuracy of WTG and to improve the estimation of harbor tranquility.

Abnormally high Waves near the Sokcho Sea Area in Recent Years (최근 몇 년간 속초해역에서의 이상 고파)

  • Jeong, Weon-Mu;Ryu, Kyong-Ho;Oh, Sang-Ho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.586-591
    • /
    • 2007
  • 최근 몇 년간 속초해역에서 발생한 이상고파의 특성을 현장관측 자료를 분석하고 수치모형실험 결과와 비교하여 검토하였다. 2004년 이후의 현장 관측을 통해 최소한 4회 이상 파고 5.0 m를 초과하는 이상고파가 발생하였다. 특히 2006년 10월 23일 11시에는 유의파고 9.69 m에 이르는 매우 큰 파가 관측되었다. 한편 천해역 파랑추산모형 SWAN을 사용하여 속초해역의 50년 및 100년빈도 심해설계파로부터 천해설계파를 산정하여 이상고파 관측 결과와 비교하였다. 수치모형실험에 의한 50년빈도 천해설계파의 최대치는 파향이 ESE 방향일 때 4.9 m에 지나지 않아서 관측된 이상고파의 파고에 비해 현저하게 작았다. 따라서 통상적으로 이루어지고 있는 수치모형을 이용한 천해설계파 산정만으로는 최근 몇 년간 수 차례 관측된 동해안에서의 이상고파를 적절하게 모의할 수 없으며 이에 대한 개선방안이 마련되어야 할 필요성이 있다.

  • PDF

이어도 기지에서 관측된 파랑 자료로부터 주변 대표파랑 자료로의 복원기술 검토

  • 이정렬;이동영
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.1439-1444
    • /
    • 2004
  • 이어도 기지에서 관측된 파랑 자료는 주변 수중 암초 또는 지형의 영향을 받으므로 수중 암초의 영향을 받지 않는 지역을 대표하는 주변 대표 파랑 자료로의 환산이 필요할 수 있다. 이를 위하여 본 연구에서는 이론적인 쇄파 모형(Lee, 1993)을 통하여 변환기술상 문제점을 파악하고 원형 천퇴에서의 수치실험을 통하여 천퇴 후면에서 파랑의 변형 정도를 파고비를 통하여 분석하였으며 이를 토대로 이어도 수중 암초에서의 파랑 변형이 관측 지점의 파고에 리치는 영향을 평가하였고 그 결과를 관측 치와 비교${\cdot}$분석하였다.

  • PDF

Comparison of Observed Wave Height and Wave Image of Sok-cho Site (속초연안지점의 관측파고와 파영상자료의 비교)

  • Jang, Bok-Jin;Yeo, Woon-Kwang;Lee, Jong-Kook;Park, Kwang-Soon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.4
    • /
    • pp.329-335
    • /
    • 2007
  • The eye measurement to observe the sea surface condition and estimate the wave height has been used in the open sea or the ship. The experts in the eye estimation can measure the wave height very accurately. The Beaufort wind scale is most widely used as a standard index of the eye measurement. However, more definite reference data such as the representative images by each wave heights must be necessary because the appearances and explanations in the Beaufort wind scale are not enough to understand the sea surface condition far the researcher and the public. The modern field data acquisition technique has been developed to measure wave heights, ocean weather data and even images of the sea surface in real-time. In this study, the wireless field image transmitting system for wave heights and images is installed in the real-time ocean measurement system of Chodo light tower near Sokcho city in South Korea. The wave heights and surface images acquired from the real time system in the field are compared with explanations of the Beaufort wind scale. The wave heights and images measured with the precision ultrasonic wave sensor and the scientific sea surface image transmitting system should be helpful to obtain more precise and definite information than the data from the Beaufort wind scale.

Numerical Analysis of Nonlinear Shoaling Process of Random Waves - Centered on the Evolution of Wave Height Distribution at the Varying Stages of Shoaling Process (불규칙 파랑 비선형 천수 과정 수치해석 - 천수 단계별 파고분포 변화를 중심으로)

  • Kim, Yong Hee;Cho, Yong Jun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.2
    • /
    • pp.106-121
    • /
    • 2020
  • In order to make harbor outskirt facilities robust using the reliability-based design, probabilistic models of wave heights at varying stage of shoaling process optimized for Korean sea waves are prerequisite. In this rationale, we numerically simulate the nonlinear shoaling process of random waves over the beach with a sandbar at its foreshore. In doing so, comprehensive numerical models made of spatially filtered Navier-Stokes Eq., LES [Large Eddy Simulation], dynamic Smagorinsky turbulence closure were used. Considering the characteristics of swells observed at the east coast of Korean Peninsula, random waves were simulated using JONSWAP wave spectrum of various peak enhancement coefficients and random phase method. The coefficients of probabilistic models proposed in this study are estimated from the results of frequency analysis of wave crests and its associated trough detected by Wave by Wave Analysis of the time series of numerically simulated free surface displacements based on the threshold crossing method. Numerical results show that Modified Glukhovskiy wave height distribution, the most referred probabilistic models at finite water depth in the literature, over-predicts the occurring probability of relatively large and small wave heights, and under predicts the occurrence rate of waves of moderate heights. On the other hand, probabilistic models developed in this study show vary encouraging agreements. In addition, the discrepancy of the Modified Glukhovskiy distribution from the measured one are most visible over the surf zone, and as a result, the Modified Glukhovskiy distribution should be applied with caution for the reliability-based design of harbor outskirt facilities deployed near the surf-zone.

Wave Height and Downtime Event Forecasting in Harbour with Complex Topography Using Auto-Regressive and Artificial Neural Networks Models (자기회귀 모델과 신경망 모델을 이용한 복잡한 지형 내 항만에서의 파고 및 하역중단 예측)

  • Yi, Jin-Hak;Ryu, Kyong-Ho;Baek, Won-Dae;Jeong, Weon-Mu
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.4
    • /
    • pp.180-188
    • /
    • 2017
  • Recently, as the strength of winds and waves increases due to the climate change, abnormal waves such as swells have been also increased, which results in the increase of downtime events of loading/unloading in a harbour. To reduce the downtime events, breakwaters were constructed in a harbour to improve the tranquility. However, it is also important and useful for efficient port operation by predicting accurately and also quickly the downtime events when the harbour operation is in a limiting condition. In this study, numerical simulations were carried out to calculate the wave conditions based on the forecasted wind data in offshore area/outside harbour and also the long-term observation was carried out to obtain the wave data in a harbour. A forecasting method was designed using an auto-regressive (AR) and artificial neural networks (ANN) models in order to establish the relationship between the wave conditions calculated by wave model (SWAN) in offshore area and observed ones in a harbour. To evaluate the applicability of the proposed method, this method was applied to predict wave heights in a harbour and to forecast the downtime events in Pohang New Harbour with highly complex topography were compared. From the verification study, it was observed that the ANN model was more accurate than the AR model.

Design and Verification of a Wave Gauge Using Digital Images (디지털 영상을 이용한 파고계 개발 및 검증)

  • Kim Taerim
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.16 no.3
    • /
    • pp.171-177
    • /
    • 2004
  • A new wave gauge using digital image of waves is developed and the performances are tested by wave tank experiments. This wave gauge uses frame frequency of 1/15 sec, conversion of analog images to digital images, and large capacity of hard disk. This wave gauge measures wave heights by detecting the buoy movement automatically from the image, where the buoy moves with the same phase of water surface. The comparison of automatic measurements of wave heights to the true data is reasonable. The wave gauge can be improved to measure wave heights on shallow waters near shorelines.

Application of rip current likelihood distributions on rip current forecast system (이안류 예보를 위한 이안류 발생정도 분포 함수의 적용)

  • Choi, Junwoo
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.8
    • /
    • pp.521-528
    • /
    • 2023
  • An approach for producing a rip current risk index using the rip current likelihood distribution obtained through the FUNWAVE simulations was applied to a rip current forecast system. The approach originally developed for an observation-based real-time rip current warning system was utilized with wave forecast data instead of observations for the rip current forecast system. The availability of the present approach was checked by comparing the observation-based rip current risk index and the wave forecast-based rip current risk index of the Haeundae Beach in 2021.

A Study on Ocean Meteorological Observation Wave Meter System based on Kalman-Filter (칼만 필터 기반의 스마트 해양기상관측 파고 시스템 연구)

  • Park, Sanghyun;Park, Yongpal;Kim, Heejin;Kim, Jinsul;Park, Jongsu
    • Journal of Digital Contents Society
    • /
    • v.18 no.7
    • /
    • pp.1377-1386
    • /
    • 2017
  • We propose a smart ocean meteorological observation system which is capable of real-time measurement of vulnerable marine climate and oceanographic conditions. Besides, imported products have several disadvantages such that they can't be measured for a long time and can't transmit data in real time. In the proposed system, smart ocean observation digging system, it observes real-time ocean weather with data logger methods. Furthermore, we also use existing dataloggers functions with various sensors which are available in the ocean at the same time. Also, we applied the Kalman-filter algorithm to the ocean crest measurement to reduce the noise and increase the accuracy of the real-time wave height measurement. In the experiment, we experimented the proposed system with our proposed algorithms through calibration devices in the real ocean environment. Then we compared the proposed system with and without the algorithms. As a result, the system developed with a lithium iron phosphate battery that can be charged by a system used in the ocean and minimized power consumption by using an RTC based timer for optimal use. Besides, we obtained optimal battery usage and measured values through experiments based on the measurement cycle.